So, I’m in a tutorial this summer, planning to write my final paper on the Kodaira embedding theorem, and I’ve been finding my total ignorance of complex algebraic geometry to be something of a problem. One of my goals next year is, coincidentally, to acquire a solid understanding of most of the topics in Griffiths-Harris. To start with, I’d like to spend a few posts on Chern-Weil theory. This gives an analytic method of computing the Chern classes of a complex vector bundle, and more generally a framework for the characteristic classes of a principal bundle over a Lie group. In fact, it tells you what the cohomology of the classifying space of a Lie group is (it’s a certain algebra of invariant polynomials on the Lie algebra), from which — by Yoneda’s lemma — you can associate cohomology classes to a principal bundle on any space.
Today, I’d like to review what Chern classes are like.
1. Introduction
To start with, we will need to describe what the Chern classes really are. These are going to be natural maps
from the complex vector bundles on a space to the cohomology ring. In other words, to each vector bundle
, we will have an element
. In order for this to be natural, we are going to want that, for any map
of topological spaces,
In other words, we are going to want the map to be functorial in
, when both are considered as contravariant functors in
. It turns out that each functor
(of
-dimensional complex vector bundles) and
is representable on the appropriate homotopy category.
Indeed, an -dimensional complex vector bundle is the same as a principal
bundle over
, and such are classified by homotopy classes of maps
. One can explicitly write down what the space
is: it is the infinite Grassmannian
of
-planes in
. There is a canonical
-dimensional vector bundle on this Grassmannian, consisting of pairs
where belongs to the plane corresponding to
. This bundle is universal. Although it does not matter for our purposes, the functors
are also representable, by the Eilenberg-Maclane spaces
.
By Yoneda’s lemma, to give such a “characteristic class” is to give an element in the cohomology ring of each Grassmannian . We could explicitly do this, but for now, let’s not. Let us just state the axioms that we want Chern classes to satisfy:
of the trivial bundle is
.
of an
-dimensional bundle has terms in the cohomology ring only in even degrees
.
, for
vector bundles.
of the tautological line bundle on
is a fixed generator of
.
These conditions are actually going to determine the Chern classes. We shall simply assume that they exist, and satisfy these axioms. They are constructed in Milnor and Stasheff’s book, for instance. (We will construct them in the smooth category.)
2. Chern classes of a line bundle
However, let’s step back and try now to construct the Chern class for a line bundle
explicitly. Note that
for
homogeneous of degree two: this is because of the axioms, and the fact that the total Chern class
of a vector bundle
is always invertible (because any vector bundle has a complement
such that
is trivial). Let
be a space, and
the sheaf of complex-valued continuous functions on
. Then line bundles on
can be described as elements of
, because a line bundle can be constructed by “gluing,” and this is what Cech 1-cocycles measure. There is an exact sequence
of sheaves, which leads to a map
The claim is that we can describe the first Chern class of a complex line bundle in this way. Let us call the above class ; we need to show that
.
Proof: Given a line bundle over
, the above construction of an element of
via the coboundary map is clearly natural in
, because pulling back
corresponds to pulling back the 1-cocycle that defines it. As a result, we just need to show that
of the tautological line bundle on
is a generator of the cohomology ring, because of the universality of this line bundle. In fact, because there is a map
which induces an isomorphism on , it suffices to do this for the tautological line bundle on
.
3. The splitting principle
We now discuss a technique that often enables questions about Chern classes of vector bundles to be reduced to the case of line bundles. In particular, it implies that if we have two sets of “Chern classes” that agree on line bundles, they agree totally. As a result, we will easily find that Chern classes are unique.
Theorem 1 Let
be a vector bundle. Then there is a space
such that
is injective and
splits as a sum of line bundles.
In general, there is no reason to expect a vector bundle to split as a sum of line bundles. Incidentally, on , this is the case (even in the holomorphic or algebraic category) by a theorem of Grothendieck, which is a fun application of the sheaf cohomology of line bundles on
.
Proof: We shall find a map such that
splits as a sum of a line bundle and another bundle, and
is injective in cohomology. Repeating this construction, we shall get the claim.
To do this, we take , the projectivization of
. This is a fiber bundle over
, whose fiber over
is the projective space
of lines through the origin in the
-vector space
. There is a tautological line bundle on
: namely, the subset of
consisting of pairs
(lying over, say,
), such that
belongs to the line corresponding to
. This is clearly a complex line bundle, and it is a subbundle of
by construction.
So all we need to see is that the map in cohomology is injective. This follows from the Leray-Hirsch theorem. That is, the cohomology is a free module over
, generated by (ironically) the first Chern class (to be defined) of the tautological line bundle on
.
As a result, we may see quickly that the Chern classes, if they exist, are uniquely determined. That is, any two natural transformations from vector bundles to the cohomology ring satisfying the required axioms coincide. Namely, because
on the universal line bundle on
, it follows that
on any line bundle (by naturality, since any line bundle is a pull-back of the universal one). It follows that
on any vector bundle which is a sum of line bundles. By the splitting principle, it follows now that the same holds for all vector bundles.
August 6, 2011 at 12:17 pm
What happened to your BDD project?
August 7, 2011 at 9:08 am
I think I’ll do a post or two on perverse sheaves in a little while.
August 8, 2011 at 11:02 am
[…] now with the preliminaries on connections and curvature established, and the Chern classes summarized, it’s time to see how they connect with one another. Namely, we want to say that, given a […]
February 19, 2015 at 5:40 pm
[…] it’s really gorgeous. When you feel comfortable, I recommend that you pop over to Akhil’s summary of Chern classes. If you don’t feel comortable, I’ve found Milnor and Stasheff to be of great […]