(Well, it looks like I should stop making promises on this blog. There hasn’t been a single post about spectra yet. I hope that will change before next semester.)
So, today I am going to talk about the formal function theorem. This is more or less a statement that the properties of taking completions and taking cohomologies are isomorphic for proper schemes. As we will see, it is the basic ingredient in the proof of the baby form of Zariski’s main theorem. In fact, this is a very important point: the formal function theorem allows one to make a comparison with the cohomology of a given sheaf over the entire space and its cohomology over an “infinitesimal neighborhood” of a given closed subset. Now localization always commutes with cohomology on non-pathological schemes. However, taking such “infinitesimal neighborhoods” is generally too fine a job for localization. This is why the formal function theorem is such a big deal.
I will give the argument following EGA III here, which is more general than that of Hartshorne (who only handles the case of a projective scheme). The form that I will state today is actually rather plain and down-to-earth. In fact, one can jazz it up a little by introducing formal schemes; perhaps this is worth discussion next time.
1. Motivation
Let be a noetherian scheme and
a closed subset, defined by a coherent sheaf of ideals
. (So
.) Given a coherent sheaf
on
, we can consider the sheaves
each of which is supported on the closed set .
We can thus consider their cohomologies ; these form an inverse system over
because the
do.
The question arises: what might this inverse system look like when we take the projective limit over ? In particular, can we get it directly from
? Well, first of all, there are clearly natural maps
for each , which commute with the maps of the projective system. There is thus a map
Now, we can’t expect this map to be an isomorphism. The are all supported on
, while
probably isn’t.
So let be an ideal. We know that
and
acts by multiplication on the cohomology groups
. Furthermore, the
th element in the
-adic filtration, that is
, maps to zero in
because it factors
In particular, for each , we have maps
which induces a map on the inverse limits
where the first is the completion with respect to the -adic topology.
This seems much more reasonable because, intuitively, completing at the -adic topology is like taking a very small neighborhood of the subset
. So we ask, when is this an isomorphism?
Well, first of all, completion is only really well-behaved for finitely generated modules. So we should have some condition that the cohomology groups are finitely generated. This we can do if there is a noetherian ring and a morphism
which is proper. In this case, it is a—nontrivial—theorem that the cohomology groups of any coherent sheaf on
are finitely generated
-modules.
In addition, the ideal should somehow determine the ideal
, not the other way around, since many different
‘s could hypothetically have the same
. We could take
. It turns out that this is what we need.
2. The formal function theorem
So, motivated by the previous section, we state: Let be a proper scheme over
, for
noetherian. Let
be an ideal whose pull-back
is a sheaf of ideals on
. Fix a coherent sheaf
on
and define as before the sheaves
.
Theorem 2 Hypotheses as above, the natural morphism
is an isomorphism of
-modules.
I will try to explain the proof of this fact. The first step, as usual, is to draw a diagram. Let . Then we have an exact sequence of sheaves
and in fact, for , we can draw a commutative diagram of exact sequences
From this, we can draw a diagram of long exact sequences in cohomology:
So this is a good thing. Indeed, we already know one of the maps: the second vertical map is just the identity. By a careful analysis of this diagram, we will be able to deduce the formal function theorem. The point is that we are going to take an inverse limit of this system of exact sequences.
The first thing we need to do is to make the sequence short exact. To do that, let’s introduce some notation. Since is fixed throughout this discussion, let’s just write
. Since
varies, let’s also write
and
for the image of
. And, finally, let’s write
for the image
; this is equivalently a kernel:
OK. Given this notation, it is clear that we have a family of semi-short exact sequences, which forms an inverse system:
The goal is to take the inverse limit of this and somehow get the formal function theorem.
We are going to show two things. One is that the form basically the
-adic filtration on
. Not quite, but the point is that they induce the
-adic topology. This is reasonable, since the
‘s are defined via
and this kind of looks like multiplication by
, although it is in the wrong spot. Second, we are going to show that the morphisms between the
‘s are eventually zero. After this, when we take the inverse limit of
it will follow (since the ‘s are basically trivial) that
. Since the
form the
-adic topology on
, we will have simply derived the formal function theorem.
2.1. Step one: the
Let us start off by analyzing the . We are going to show that the
form a filtration on
that is equivalent to the
-adic one. On the one hand, it is clear that
because if
, the map
factors as
So the are at least as large as the
-adic filtration. For the other inclusion, namely that the
are small, we shall need to invoke a fairly big result.
Theorem 3 Let
be a morphism of proper noetherian schemes. Then if
is a coherent sheaf on
, the higher direct images
are coherent on
.
So this is basically a relative and scheme-theoretic version of the fact that on a complete (e.g. projective) variety over a field, the cohomology groups are always finite-dimensional. I don’t want to prove it here, and instead refer you to EGA III.3 for the (rather beautiful) argument. Actually, however, we need a stronger variant of the above direct image theorem:
Theorem 4 Let
be a morphism of proper noetherian schemes and let
be a quasi-coherent, finitely generated algebra over
. Then if
is a quasi-coherent sheaf on
which is a finitely generated
-module, the higher direct images
are finitely generated
-modules.
This is a strengthening of the usual proper mapping theorem, but it is in fact not terribly difficult to deduce from it by simply forming the relative of
and invoking the usual one. Nonetheless, I won’t repeat the details in EGA III.3.
So now we are going to consider the case of interest in the formal function theorem. Namely, we have a proper morphism,
an ideal,
an ideal of
, and
a coherent sheaf on
. Now we can consider the blowup algebra
, which is a finitely generated
-algebra; it can be given a sheafish version
on
and pulled back to
, when it is the
-algebra
Now the quasi-coherent sheaf
is a finitely generated (sheaf of) module(s) over . It follows that the cohomology
is a finitely generated module over the blowup algebra , by the second coherence theorem. By finite generation, it follows that
for large . The images of these are the
, so it is now clear that
for
large. This implies that the
form a filtration equivalent to the
-adic one. This is precisely what we wanted to see.
2.2. Step two: The
So one step is done. We have analyzed the . Now, we need to analyze the
. Namely, we need to show that the maps
between them are basically zero, for
. Recall the definition
or
We will play both off against each other together with the proper coherence theorem. So the first thing to do is to note that since everything here is an -module, and by the first definition there are canonical maps
given by multiplication, we find that
is a module over the blowup algebra , as before. In fact, we find that
is a submodule of
.
Since we know that the module is finitely generated by the (second) coherence theorem, we find that
is finitely generated over the blowup algebra. However, it is also true, from the second definition we may see this, that
is as an
-module annihilated by
, because
is. It follows that there is a high power
such that the ideal
in the blowup algebra annihilates the entire module
.
Now the map is induced by the usual map
, We have a sequence
where the first comes from the blowup multiplication and the second is the canonical map. The first map is surjective for by finite generation over the blowup algebra, and the composite is zero for
by the above reasoning. It follows that
is zero if .
2.3. Completion of the proof
So we have established two things. One, that the form basically an
-adic filtration on
. Second, that the maps
are zero for
, and in particular, the inverse limit
is zero. Now we have an exact sequence for each
,
and we can take the inverse limit, which is a left-exact functor. We find an exact sequence
which is precisely what the formal function theorem states.
December 23, 2010 at 9:27 am
[…] | Tags: formal function theorem, higher direct images, sheaf cohomology | Leave a Comment So last time, we introduced the first form of the formal function theorem. We said that if was a proper scheme […]
December 23, 2010 at 2:43 pm
Promises about blogging are difficult to keep! I think you can only really blog about something that grips you in the moment, and if the moment passes, it passes…
December 23, 2010 at 6:31 pm
They are! But if I fail at learning the material at spectra over break, I won’t be able to follow a topics in topology course that Lurie is teaching next spring.
June 19, 2011 at 3:37 pm
[…] this follows from the formal function theorem, since open and closed subsets of any locally ringed space are in bijection with idempotents in […]