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ABSTRACT. These are notes for the presentation I am giving today, which itself is in-
tended to conclude the independent study on algebraic number theory I took with Professor
Candiotti this spring.

The standard absolute value on R: A review
Recall the following properties of the regular absolute value |·|∞ on R:

• |x|∞ ≥ 0 with equality iff x = 0
• |xy|∞ = |x|∞ |y|∞, x, y ∈ R
• |x+ y|∞ ≤ |x|∞ + |y|∞ (Triangle inequality)

The standard absolute value induces a notion of distance between two elements of R,
the distance between x, y being

|x− y|∞ .

Absolute values are studied on more general fields in algebra.

The p-adic valuation on Q

We define the p-adic valuation: If x 6= 0 is an integer, p a fixed prime, pr the maximum
power dividing x,

|x|p =
(

1
2

)r

.

If r ∈ Q, we have r = a/b for a, b ∈ Z, and we set

|r|p =
|a|p
|b|p

.

This is the p-adic absolute value, defined only on Q. (Also |0|p = 0.)

• |x|p ≥ 0 with equality iff x = 0
• |xy|p = |x|p |y|p, x, y ∈ Q
• |x+ y|p ≤ max(|x|p , |y|p) (Non-archimedean inequality: this is stronger than

the Triangle Inequality)

p-adic Distance
We can define a new distance and thus a topology on Q from the valuation |·|p: the distance
between x, y is

|x− y|p .
1
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x, y are close iff x− y is divisible by a high power of p.
A sequence {an} in Q converges p-adically to a if to all ε > 0, there exists M such

that
n > M implies |an − a|p < ε, or lim |an − a|p = 0.

A sequence {an} is p-adically Cauchy if to ε > 0, there is S s.t.

m,n > S → |an − am|p < ε.

Unlike in R, a p-adically Cauchy sequence need not converge p-adically!

Completions and Qp

R is the completion (= filling in holes appropriately) of Q w.r.t. the standard absolute
value.

The p-adic numbers Qp are the completion of Q w.r.t. the valuation |·|p.
• Addition, subtraction, multiplication, division extend to the completion—Qp is

a field
• Q ⊂ Qp, just as Q ⊂ R = Q∞
• The absolute value |·|p extends to Qp by continuity (Q is dense in Qp)
• Qp is complete with respect to the extended |·|p: Any Cauchy sequence in Qp

has a limit in Qp

Infinite sums in Qp

Let {an} be a sequence in Qp. We say that
∑∞

j=0 aj = a converges to a ∈ Qp if the partial
sums Sn =

∑n
j=0 aj converge to a.

THEOREM. The sum
∑∞

j=0 aj converges if and only if lim aj = 0.

PROOF. One implication: straightforward. Suppose aj → 0; pick ε > 0 and choose
N large so that n > N → |an|p < ε. Then

m,n > N means |Sn − Sm|p =

∣∣∣∣∣∣
max(m,n)∑

j=min(m,n)+1

an

∣∣∣∣∣∣
p

≤ max
j>N
|aj |p < ε,

so the partial sums are Cauchy and consequently converge. �

An example
By substituting x = 2 in the identity 1

1−x = 1 + x + x2 + x3 + . . . , Euler erroneously
concluded 1 + 2 + 4 + · · · = −1 in R.

EXAMPLE. In Q2,
1 + 2 + 4 + 8 + · · · = −1.

Indeed,

Sn =
n∑

j=0

2j = 2n+1 − 1,

so
|Sn − (−1)|2 = (0.5)n+1 → 0 as n→∞.

COROLLARY. Q2 is not an ordered field.

The Heine-Borel Theorem
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THEOREM (Heine-Borel). A set in R is compact if it is closed and bounded.

This makes sense for Qp too, where point-set topology works similarly.
Let A ⊂ Qp. A is open if for x ∈ A, there is s > 0 s.t.

Ns(x) ≡ {y : |y − x|p < s} ⊂ A;

A is closed if Qp−A is open. B ⊂ Qp is compact if every open covering of B has a finite
subcovering. C is called bounded if there existsM > 0 such that x ∈ C implies |x|p ≤ C.

Notice how similar these notions are to R!

THEOREM (p-adic Heine-Borel). A set in Qp is compact if it is closed and bounded.

The ring Zp

We define
Zp = {x ∈ Qp : |x|p ≤ 1};

this is the analog of the unit interval in R.

THEOREM. Zp is a ring.

PROOF. If |x|p ≤ 1, |y|p ≤ 1, then |xy|p = |x|p |y|p ≤ 1. Also |x+ y|p ≤
max(|x|p , |y|p) ≤ 1. �

Notice how important the nonarchimedean property is.
Now Z ⊂ Zp, and in fact m/n ∈ Zp if p - n.

THEOREM. The ideals of Zp are of the form prZp for r ≥ 0. Zp is thus a principal
ideal domain.

The p-adic expansion
A real number x ∈ [0, 1] can be represented by a sum

∑
n≥0 bn2−n where each bn ∈

{0, 1}—the binary expansion. For p-adic numbers, the sum goes in the opposite direction:

THEOREM. Any element x ∈ Zp can be expressed uniquely as an infinite sum

x =
∑
n≥0

anp
n = a0 + a1p+ a2p

2 + a3p
3 + . . . ,

where each an = 0, 1, . . . , or p− 1.

For x ∈ Qp, we have a similar expansion, but we may have a finite number of terms
anp

n with n < 0.

Addition via Power Series

EXAMPLE. Given two p-adic integers x, y represented by {an}, {bn}, we can add the
power series term-by-term

x+ y = a0 + b0 + p(a1 + b1) + p2(a2 + b2) + . . .

and then “carry” to put this expansion in the canonical form with each coefficient in
{0, 1, . . . , p− 1}. To multiply, we pretend we have two power series, multiply, and then do
the reduction.



4 AKHIL MATHEW

Consider the 5-adic numbers

x = 1 + 3(5) + 4(52) + . . . , y = 2 + 4(5) + 3(52) + . . . ;

then
x+ y = 3 + 2(5) + 3(52) + . . . .

Square Roots of p-adic Integers near 1
Let p 6= 2.

Using the binomial series, we can take square roots of numerous p-adic integers.

THEOREM. Let x = 1 + pα, for α ∈ Zp. Then there is y ∈ Zp such that y2 = x.

PROOF. We take

y = 1 +
(

1/2
1

)
pα+

(
1/2
2

)
(pα)2 + . . . ;

this is just the binomial series, and can be seen to converge because |p|p < 1. �

EXAMPLE.
√

7 ∈ Q3 because 7 = 1 + 2(3).

Square Roots, Part II (p 6= 2)
Given a p-adic integer x ∈ Zp, we can write x = x0+pα, where x0 ∈ Z∩{0, 1, . . . , p−1}
and α ∈ Zp by the canonical expansion.

THEOREM. Suppose x0 6= 0. x is a square in Zp if and only if x0 is a square mod p,
i.e. if there exists y0 ∈ Z such that

y2
0 ≡ x0 mod p.

In other words, one can tell if x is a square by looking at the residue of its first term
mod p!

The Mahler Expansion
The Mahler expansion is a p-adic analog of Taylor expansions.

A function f : Zp → Zp is continuous at x0 ∈ Zp if, to each ε > 0, there is a δ > 0
such that

|x− x0|p < δ → |f(x)− f(x0)|p < ε.

Continuous functions can be expressed in terms of the binomial coefficients defined
by (

x

n

)
=
x(x− 1) . . . (x− n)

n!
; this is a function on Zp.

THEOREM (Mahler). Let f : Zp → Zp be continuous. Then there exists a sequence
{βn} ⊂ Qp, with limβn = 0, such that

f(x) =
∞∑

n=0

βn

(
x

n

)
; x ∈ Zp.

Extensions of Qp and Q
A finite field extension K/Qp is called a local field.

THEOREM. Let K/Qp be a local field. Then the absolute value |·|p can be extended
uniquely to K; with respect to the new absolute value, K is complete.
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The study of these local fields is an important aspect of algebraic number theory. E.g.,
compare the ring Zp to the ring of elements of K whose absolute value is ≤ 1.

An extension L/K of fields is called abelian if it is Galois and the Galois group is
abelian. Using local class field theory, one proves:

THEOREM (Local Kronecker-Weber). Let K/Qp be a finite abelian extension, so K
is a local field. Then there exists a root of unity ζn such that K ⊂ Qp(ζn).

Why does Qp Matter?
The Hasse Principle: If something is true for Qp, all p, and for R, then it is true for Q.

We give examples.

THEOREM. Suppose x ∈ Q and x has a square root in each field Qp and in R (i.e. is
positive). Then x has a square root in Q itself.

THEOREM (Hasse-Minkowski). Suppose a quadratic form (a homogeneous polyno-
mial of degree 2 in several variables) Q(X) =

∑
i,j aijXiXj over Q has a nontrivial root

in each Qp and in R. Then Q has a nontrivial root in Q.

THEOREM (Global Kronecker-Weber). Let K/Q be a finite abelian extension. Then
K ⊂ Q(ζn) for some n.
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