The p-adic Numbers

Akhil Mathew

> ABSTRACT. These are notes for the presentation I am giving today, which itself is intended to conclude the independent study on algebraic number theory I took with Professor Candiotti this spring.

The standard absolute value on \mathbb{R} : A review

Recall the following properties of the regular absolute value $|\cdot|_{\infty}$ on \mathbb{R} :

- $|x|_{\infty} \geq 0$ with equality iff $x=0$
- $|x y|_{\infty}=|x|_{\infty}|y|_{\infty}, x, y \in \mathbb{R}$
- $|x+y|_{\infty} \leq|x|_{\infty}+|y|_{\infty}$ (Triangle inequality)

The standard absolute value induces a notion of distance between two elements of \mathbb{R}, the distance between x, y being

$$
|x-y|_{\infty}
$$

Absolute values are studied on more general fields in algebra.

The p-adic valuation on \mathbb{Q}

We define the p-adic valuation: If $x \neq 0$ is an integer, p a fixed prime, p^{r} the maximum power dividing x,

$$
|x|_{p}=\left(\frac{1}{2}\right)^{r}
$$

If $r \in \mathbb{Q}$, we have $r=a / b$ for $a, b \in \mathbb{Z}$, and we set

$$
|r|_{p}=\frac{|a|_{p}}{|b|_{p}}
$$

This is the p-adic absolute value, defined only on \mathbb{Q}. (Also $|0|_{p}=0$.)

- $|x|_{p} \geq 0$ with equality iff $x=0$
- $|x y|_{p}=|x|_{p}|y|_{p}, x, y \in \mathbb{Q}$
- $|x+y|_{p} \leq \max \left(|x|_{p},|y|_{p}\right)$ (Non-archimedean inequality: this is stronger than the Triangle Inequality)

p-adic Distance

We can define a new distance and thus a topology on \mathbb{Q} from the valuation $|\cdot|_{p}$: the distance between x, y is

$$
|x-y|_{p}
$$

x, y are close iff $x-y$ is divisible by a high power of p.
A sequence $\left\{a_{n}\right\}$ in \mathbb{Q} converges p-adically to a if to all $\epsilon>0$, there exists M such that

$$
n>M \text { implies }\left|a_{n}-a\right|_{p}<\epsilon, \text { or } \lim \left|a_{n}-a\right|_{p}=0
$$

A sequence $\left\{a_{n}\right\}$ is p-adically Cauchy if to $\epsilon>0$, there is S s.t.

$$
m, n>S \rightarrow\left|a_{n}-a_{m}\right|_{p}<\epsilon
$$

Unlike in \mathbb{R}, a p-adically Cauchy sequence need not converge p-adically!
Completions and \mathbb{Q}_{p}
\mathbb{R} is the completion (= filling in holes appropriately) of \mathbb{Q} w.r.t. the standard absolute value.

The p-adic numbers \mathbb{Q}_{p} are the completion of \mathbb{Q} w.r.t. the valuation $|\cdot|_{p}$.

- Addition, subtraction, multiplication, division extend to the completion- \mathbb{Q}_{p} is a field
- $\mathbb{Q} \subset \mathbb{Q}_{p}$, just as $\mathbb{Q} \subset \mathbb{R}=\mathbb{Q}_{\infty}$
- The absolute value $|\cdot|_{p}$ extends to \mathbb{Q}_{p} by continuity $\left(\mathbb{Q}\right.$ is dense in \mathbb{Q}_{p})
- \mathbb{Q}_{p} is complete with respect to the extended $|\cdot|_{p}$: Any Cauchy sequence in \mathbb{Q}_{p} has a limit in \mathbb{Q}_{p}

Infinite sums in \mathbb{Q}_{p}

Let $\left\{a_{n}\right\}$ be a sequence in \mathbb{Q}_{p}. We say that $\sum_{j=0}^{\infty} a_{j}=a$ converges to $a \in \mathbb{Q}_{p}$ if the partial sums $S_{n}=\sum_{j=0}^{n} a_{j}$ converge to a.

THEOREM. The sum $\sum_{j=0}^{\infty} a_{j}$ converges if and only if $\lim a_{j}=0$.
Proof. One implication: straightforward. Suppose $a_{j} \rightarrow 0$; pick $\epsilon>0$ and choose N large so that $n>N \rightarrow\left|a_{n}\right|_{p}<\epsilon$. Then

$$
m, n>N \text { means }\left|S_{n}-S_{m}\right|_{p}=\left|\sum_{j=\min (m, n)+1}^{\max (m, n)} a_{n}\right|_{p} \leq \max _{j>N}\left|a_{j}\right|_{p}<\epsilon,
$$

so the partial sums are Cauchy and consequently converge.

An example

By substituting $x=2$ in the identity $\frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots$, Euler erroneously concluded $1+2+4+\cdots=-1$ in \mathbb{R}.

Example. In \mathbb{Q}_{2},

$$
1+2+4+8+\cdots=-1
$$

Indeed,

$$
S_{n}=\sum_{j=0}^{n} 2^{j}=2^{n+1}-1
$$

so

$$
\left|S_{n}-(-1)\right|_{2}=(0.5)^{n+1} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Corollary. \mathbb{Q}_{2} is not an ordered field.

The Heine-Borel Theorem

Theorem (Heine-Borel). A set in \mathbb{R} is compact if it is closed and bounded.
This makes sense for \mathbb{Q}_{p} too, where point-set topology works similarly.
Let $A \subset \mathbb{Q}_{p} . A$ is open if for $x \in A$, there is $s>0$ s.t.

$$
N_{s}(x) \equiv\left\{y:|y-x|_{p}<s\right\} \subset A
$$

A is closed if $\mathbb{Q}_{p}-A$ is open. $B \subset \mathbb{Q}_{p}$ is compact if every open covering of B has a finite subcovering. C is called bounded if there exists $M>0$ such that $x \in C$ implies $|x|_{p} \leq C$.

Notice how similar these notions are to \mathbb{R} !
THEOREM (p-adic Heine-Borel). A set in \mathbb{Q}_{p} is compact if it is closed and bounded.

The ring \mathbb{Z}_{p}

We define

$$
\mathbb{Z}_{p}=\left\{x \in \mathbb{Q}_{p}:|x|_{p} \leq 1\right\} ;
$$

this is the analog of the unit interval in \mathbb{R}.
THEOREM. \mathbb{Z}_{p} is a ring.
Proof. If $|x|_{p} \leq 1,|y|_{p} \leq 1$, then $|x y|_{p}=|x|_{p}|y|_{p} \leq 1$. Also $|x+y|_{p} \leq$ $\max \left(|x|_{p},|y|_{p}\right) \leq 1$.

Notice how important the nonarchimedean property is.
Now $\mathbb{Z} \subset \mathbb{Z}_{p}$, and in fact $m / n \in \mathbb{Z}_{p}$ if $p \nmid n$.
THEOREM. The ideals of \mathbb{Z}_{p} are of the form $p^{r} \mathbb{Z}_{p}$ for $r \geq 0 . \mathbb{Z}_{p}$ is thus a principal ideal domain.

The p-adic expansion
A real number $x \in[0,1]$ can be represented by a sum $\sum_{n \geq 0} b_{n} 2^{-n}$ where each $b_{n} \in$ $\{0,1\}$-the binary expansion. For p-adic numbers, the sum goes in the opposite direction:

THEOREM. Any element $x \in \mathbb{Z}_{p}$ can be expressed uniquely as an infinite sum

$$
x=\sum_{n \geq 0} a_{n} p^{n}=a_{0}+a_{1} p+a_{2} p^{2}+a_{3} p^{3}+\ldots,
$$

where each $a_{n}=0,1, \ldots$, or $p-1$.
For $x \in \mathbb{Q}_{p}$, we have a similar expansion, but we may have a finite number of terms $a_{n} p^{n}$ with $n<0$.

Addition via Power Series

EXAMPLE. Given two p-adic integers x, y represented by $\left\{a_{n}\right\},\left\{b_{n}\right\}$, we can add the power series term-by-term

$$
x+y=a_{0}+b_{0}+p\left(a_{1}+b_{1}\right)+p^{2}\left(a_{2}+b_{2}\right)+\ldots
$$

and then "carry" to put this expansion in the canonical form with each coefficient in $\{0,1, \ldots, p-1\}$. To multiply, we pretend we have two power series, multiply, and then do the reduction.

Consider the 5 -adic numbers

$$
x=1+3(5)+4\left(5^{2}\right)+\ldots, y=2+4(5)+3\left(5^{2}\right)+\ldots ;
$$

then

$$
x+y=3+2(5)+3\left(5^{2}\right)+\ldots
$$

Square Roots of p-adic Integers near 1

Let $p \neq 2$.
Using the binomial series, we can take square roots of numerous p-adic integers.
Theorem. Let $x=1+p \alpha$, for $\alpha \in \mathbb{Z}_{p}$. Then there is $y \in \mathbb{Z}_{p}$ such that $y^{2}=x$.
Proof. We take

$$
y=1+\binom{1 / 2}{1} p \alpha+\binom{1 / 2}{2}(p \alpha)^{2}+\ldots
$$

this is just the binomial series, and can be seen to converge because $|p|_{p}<1$.
EXAMPLE. $\sqrt{7} \in \mathbb{Q}_{3}$ because $7=1+2(3)$.

Square Roots, Part II $(p \neq 2)$
Given a p-adic integer $x \in \mathbb{Z}_{p}$, we can write $x=x_{0}+p \alpha$, where $x_{0} \in \mathbb{Z} \cap\{0,1, \ldots, p-1\}$ and $\alpha \in \mathbb{Z}_{p}$ by the canonical expansion.

ThEOREM. Suppose $x_{0} \neq 0 . x$ is a square in \mathbb{Z}_{p} if and only if x_{0} is a square $\bmod p$, i.e. if there exists $y_{0} \in \mathbb{Z}$ such that

$$
y_{0}^{2} \equiv x_{0} \quad \bmod p
$$

In other words, one can tell if x is a square by looking at the residue of its first term $\bmod p!$

The Mahler Expansion

The Mahler expansion is a p-adic analog of Taylor expansions.
A function $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ is continuous at $x_{0} \in \mathbb{Z}_{p}$ if, to each $\epsilon>0$, there is a $\delta>0$ such that

$$
\left|x-x_{0}\right|_{p}<\delta \rightarrow\left|f(x)-f\left(x_{0}\right)\right|_{p}<\epsilon
$$

Continuous functions can be expressed in terms of the binomial coefficients defined by

$$
\binom{x}{n}=\frac{x(x-1) \ldots(x-n)}{n!} ; \text { this is a function on } \mathbb{Z}_{p}
$$

THEOREM (Mahler). Let $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ be continuous. Then there exists a sequence $\left\{\beta_{n}\right\} \subset \mathbb{Q}_{p}$, with $\lim \beta_{n}=0$, such that

$$
f(x)=\sum_{n=0}^{\infty} \beta_{n}\binom{x}{n} ; x \in \mathbb{Z}_{p}
$$

Extensions of \mathbb{Q}_{p} and \mathbb{Q}

A finite field extension K / \mathbb{Q}_{p} is called a local field.
THEOREM. Let K / \mathbb{Q}_{p} be a local field. Then the absolute value $|\cdot|_{p}$ can be extended uniquely to K; with respect to the new absolute value, K is complete.

The study of these local fields is an important aspect of algebraic number theory. E.g., compare the ring \mathbb{Z}_{p} to the ring of elements of K whose absolute value is ≤ 1.

An extension L / K of fields is called abelian if it is Galois and the Galois group is abelian. Using local class field theory, one proves:

THEOREM (Local Kronecker-Weber). Let K / \mathbb{Q}_{p} be a finite abelian extension, so K is a local field. Then there exists a root of unity ζ_{n} such that $K \subset \mathbb{Q}_{p}\left(\zeta_{n}\right)$.

Why does \mathbb{Q}_{p} Matter?

The Hasse Principle: If something is true for \mathbb{Q}_{p}, all p, and for \mathbb{R}, then it is true for \mathbb{Q}.
We give examples.
THEOREM. Suppose $x \in \mathbb{Q}$ and x has a square root in each field \mathbb{Q}_{p} and in \mathbb{R} (i.e. is positive). Then x has a square root in \mathbb{Q} itself.

THEOREM (Hasse-Minkowski). Suppose a quadratic form (a homogeneous polynomial of degree 2 in several variables) $Q(X)=\sum_{i, j} a_{i j} X_{i} X_{j}$ over \mathbb{Q} has a nontrivial root in each \mathbb{Q}_{p} and in \mathbb{R}. Then Q has a nontrivial root in \mathbb{Q}.

Theorem (Global Kronecker-Weber). Let K / \mathbb{Q} be a finite abelian extension. Then $K \subset \mathbb{Q}\left(\zeta_{n}\right)$ for some n.

References

[1] George Bachman. Introduction to p-Adic Numbers and Valuation Theory. Academic Press, 1964.
[2] Nicolas Bourbaki. Commutative Algebra. Hermann, 1972.
[3] J.W.S. Cassels. Local Fields. Cambridge University Press, 1986.
[4] Morris Kline. Euler and infinite series. Mathematics Magazine, 56(5):307-314, 1983.
[5] Serge Lang. Algebraic Number Theory. Springer, 1994.
[6] Kurt Mahler. Introduction to p-Adic Numbers and their Functions. Cambridge University Press, 1973.
[7] Jean-Pierre Serre. Local Fields. Springer, 1979.
[8] Jean-Pierre Serre. A Course in Arithmetic. Springer, 1996.

