The *p*-adic Numbers

Akhil Mathew

ABSTRACT. These are notes for the presentation I am giving today, which itself is intended to conclude the independent study on algebraic number theory I took with Professor Candiotti this spring.

The standard absolute value on \mathbb{R} : A review

Recall the following properties of the regular absolute value $\left|\cdot\right|_{\infty}$ on \mathbb{R} :

- $|x|_{\infty} \ge 0$ with equality iff x = 0
- $|xy|_{\infty} = |x|_{\infty} |y|_{\infty}, x, y \in \mathbb{R}$ $|x+y|_{\infty} \le |x|_{\infty} + |y|_{\infty}$ (Triangle inequality)

The standard absolute value induces a notion of *distance* between two elements of \mathbb{R} , the distance between x, y being

$$|x-y|_{\infty}$$
.

Absolute values are studied on more general fields in algebra.

The *p*-adic valuation on \mathbb{Q}

We define the p-adic valuation: If $x \neq 0$ is an integer, p a fixed prime, p^r the maximum power dividing x,

$$\left| \left| x \right|_p = \left(\frac{1}{2} \right)^r.$$

If $r \in \mathbb{Q}$, we have r = a/b for $a, b \in \mathbb{Z}$, and we set

$$|r|_p = \frac{|a|_p}{|b|_p}.$$

This is the *p*-adic absolute value, defined only on \mathbb{Q} . (Also $|0|_p = 0$.)

- $|x|_p \ge 0$ with equality iff x = 0
- $|xy|_p = |x|_p |y|_p, x, y \in \mathbb{Q}$
- $|x+y|_p \leq \max(|x|_p, |y|_p)$ (Non-archimedean inequality: this is stronger than the Triangle Inequality)

p-adic Distance

We can define a new *distance* and thus a topology on \mathbb{Q} from the valuation $|\cdot|_p$: the distance between x, y is

$$|x-y|_p$$

x, y are close iff x - y is divisible by a high power of p.

A sequence $\{a_n\}$ in \mathbb{Q} converges *p*-adically to *a* if to all $\epsilon > 0$, there exists *M* such that

n > M implies $|a_n - a|_p < \epsilon$, or $\lim |a_n - a|_p = 0$.

A sequence $\{a_n\}$ is *p*-adically Cauchy if to $\epsilon > 0$, there is S s.t.

$$m, n > S \rightarrow |a_n - a_m|_p < \epsilon$$

Unlike in \mathbb{R} , a *p*-adically Cauchy sequence *need not converge p-adically!*

Completions and \mathbb{Q}_p

 \mathbb{R} is the *completion* (= filling in holes appropriately) of \mathbb{Q} w.r.t. the standard absolute value.

The *p*-adic numbers \mathbb{Q}_p are the completion of \mathbb{Q} w.r.t. the valuation $|\cdot|_p$.

- Addition, subtraction, multiplication, division extend to the completion— \mathbb{Q}_p is a *field*
- $\mathbb{Q} \subset \mathbb{Q}_p$, just as $\mathbb{Q} \subset \mathbb{R} = \mathbb{Q}_\infty$
- The absolute value $\left|\cdot\right|_{p}$ extends to \mathbb{Q}_{p} by continuity (\mathbb{Q} is dense in \mathbb{Q}_{p})
- \mathbb{Q}_p is complete with respect to the extended $|\cdot|_p$: Any Cauchy sequence in \mathbb{Q}_p has a limit in \mathbb{Q}_p

Infinite sums in \mathbb{Q}_p

Let $\{a_n\}$ be a sequence in \mathbb{Q}_p . We say that $\sum_{j=0}^{\infty} a_j = a$ converges to $a \in \mathbb{Q}_p$ if the partial sums $S_n = \sum_{j=0}^n a_j$ converge to a.

THEOREM. The sum $\sum_{j=0}^{\infty} a_j$ converges if and only if $\lim a_j = 0$.

PROOF. One implication: straightforward. Suppose $a_j \to 0$; pick $\epsilon > 0$ and choose N large so that $n > N \to |a_n|_p < \epsilon$. Then

$$m, n > N \text{ means } |S_n - S_m|_p = \left| \sum_{j=\min(m,n)+1}^{\max(m,n)} a_n \right|_p \le \max_{j>N} |a_j|_p < \epsilon,$$

so the partial sums are Cauchy and consequently converge.

$$\square$$

An example

By substituting x = 2 in the identity $\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots$, Euler erroneously concluded $1 + 2 + 4 + \dots = -1$ in \mathbb{R} .

EXAMPLE. In \mathbb{Q}_2 ,

$$1 + 2 + 4 + 8 + \dots = -1.$$

Indeed,

$$S_n = \sum_{j=0}^n 2^j = 2^{n+1} - 1,$$

so

$$S_n - (-1)|_2 = (0.5)^{n+1} \to 0 \text{ as } n \to \infty$$

COROLLARY. \mathbb{Q}_2 is not an ordered field.

The Heine-Borel Theorem

2

THEOREM (Heine-Borel). A set in \mathbb{R} is compact if it is closed and bounded.

This makes sense for \mathbb{Q}_p too, where point-set topology works similarly. Let $A \subset \mathbb{Q}_p$. A is *open* if for $x \in A$, there is s > 0 s.t.

$$N_s(x) \equiv \{y : |y - x|_n < s\} \subset A;$$

A is closed if $\mathbb{Q}_p - A$ is open. $B \subset \mathbb{Q}_p$ is compact if every open covering of B has a finite subcovering. C is called *bounded* if there exists M > 0 such that $x \in C$ implies $|x|_p \leq C$. Notice how similar these notions are to \mathbb{R} !

THEOREM (*p*-adic Heine-Borel). A set in \mathbb{Q}_p is compact if it is closed and bounded.

The ring \mathbb{Z}_p

We define

$$\mathbb{Z}_p = \{ x \in \mathbb{Q}_p : |x|_p \le 1 \};$$

this is the analog of the unit interval in \mathbb{R} .

THEOREM. \mathbb{Z}_p is a ring.

PROOF. If $|x|_p \le 1, |y|_p \le 1$, then $|xy|_p = |x|_p |y|_p \le 1$. Also $|x+y|_p \le \max(|x|_p, |y|_p) \le 1$.

Notice how important the nonarchimedean property is. Now $\mathbb{Z} \subset \mathbb{Z}_p$, and in fact $m/n \in \mathbb{Z}_p$ if $p \nmid n$.

THEOREM. The ideals of \mathbb{Z}_p are of the form $p^r \mathbb{Z}_p$ for $r \ge 0$. \mathbb{Z}_p is thus a principal ideal domain.

The *p*-adic expansion

A real number $x \in [0,1]$ can be represented by a sum $\sum_{n\geq 0} b_n 2^{-n}$ where each $b_n \in \{0,1\}$ —the binary expansion. For *p*-adic numbers, the sum goes in the opposite direction:

THEOREM. Any element $x \in \mathbb{Z}_p$ can be expressed uniquely as an infinite sum

$$x = \sum_{n \ge 0} a_n p^n = a_0 + a_1 p + a_2 p^2 + a_3 p^3 + \dots,$$

where each $a_n = 0, 1, ..., or p - 1$.

For $x \in \mathbb{Q}_p$, we have a similar expansion, but we may have a finite number of terms $a_n p^n$ with n < 0.

Addition via Power Series

EXAMPLE. Given two p-adic integers x, y represented by $\{a_n\}, \{b_n\}$, we can add the power series term-by-term

$$x + y = a_0 + b_0 + p(a_1 + b_1) + p^2(a_2 + b_2) + \dots$$

and then "carry" to put this expansion in the canonical form with each coefficient in $\{0, 1, ..., p-1\}$. To multiply, we pretend we have two power series, multiply, and then do the reduction.

Consider the 5-adic numbers

$$x = 1 + 3(5) + 4(5^2) + \dots, y = 2 + 4(5) + 3(5^2) + \dots;$$

then

$$x + y = 3 + 2(5) + 3(5^2) + \dots$$

Square Roots of *p*-adic Integers near 1

Let $p \neq 2$.

Using the binomial series, we can take square roots of numerous *p*-adic integers.

THEOREM. Let $x = 1 + p\alpha$, for $\alpha \in \mathbb{Z}_p$. Then there is $y \in \mathbb{Z}_p$ such that $y^2 = x$.

PROOF. We take

$$y = 1 + {\binom{1/2}{1}}p\alpha + {\binom{1/2}{2}}(p\alpha)^2 + \dots;$$

this is just the binomial series, and can be seen to converge because $|p|_p < 1$.

EXAMPLE. $\sqrt{7} \in \mathbb{Q}_3$ because 7 = 1 + 2(3).

Square Roots, Part II $(p \neq 2)$

Given a *p*-adic integer $x \in \mathbb{Z}_p$, we can write $x = x_0 + p\alpha$, where $x_0 \in \mathbb{Z} \cap \{0, 1, \dots, p-1\}$ and $\alpha \in \mathbb{Z}_p$ by the canonical expansion.

THEOREM. Suppose $x_0 \neq 0$. x is a square in \mathbb{Z}_p if and only if x_0 is a square mod p, *i.e.* if there exists $y_0 \in \mathbb{Z}$ such that

$$y_0^2 \equiv x_0 \mod p.$$

In other words, one can tell if x is a square by looking at the residue of its first term mod p!

The Mahler Expansion

The Mahler expansion is a p-adic analog of Taylor expansions.

A function $f : \mathbb{Z}_p \to \mathbb{Z}_p$ is *continuous* at $x_0 \in \mathbb{Z}_p$ if, to each $\epsilon > 0$, there is a $\delta > 0$ such that

$$|x - x_0|_n < \delta \to |f(x) - f(x_0)|_n < \epsilon.$$

Continuous functions can be expressed in terms of the *binomial coefficients* defined by

$$\binom{x}{n} = \frac{x(x-1)\dots(x-n)}{n!}; \text{ this is a function on } \mathbb{Z}_p.$$

THEOREM (Mahler). Let $f : \mathbb{Z}_p \to \mathbb{Z}_p$ be continuous. Then there exists a sequence $\{\beta_n\} \subset \mathbb{Q}_p$, with $\lim \beta_n = 0$, such that

$$f(x) = \sum_{n=0}^{\infty} \beta_n \binom{x}{n}; \ x \in \mathbb{Z}_p.$$

Extensions of \mathbb{Q}_p and \mathbb{Q}

A finite field extension K/\mathbb{Q}_p is called a *local field*.

THEOREM. Let K/\mathbb{Q}_p be a local field. Then the absolute value $|\cdot|_p$ can be extended uniquely to K; with respect to the new absolute value, K is complete.

THE *p*-ADIC NUMBERS

The study of these local fields is an important aspect of algebraic number theory. E.g., compare the ring \mathbb{Z}_p to the ring of elements of K whose absolute value is ≤ 1 .

An extension L/K of fields is called *abelian* if it is Galois and the Galois group is abelian. Using local class field theory, one proves:

THEOREM (Local Kronecker-Weber). Let K/\mathbb{Q}_p be a finite abelian extension, so K is a local field. Then there exists a root of unity ζ_n such that $K \subset \mathbb{Q}_p(\zeta_n)$.

Why does \mathbb{Q}_p Matter?

The Hasse Principle: If something is true for \mathbb{Q}_p , all p, and for \mathbb{R} , then it is true for \mathbb{Q} . We give examples.

THEOREM. Suppose $x \in \mathbb{Q}$ and x has a square root in each field \mathbb{Q}_p and in \mathbb{R} (i.e. is positive). Then x has a square root in \mathbb{Q} itself.

THEOREM (Hasse-Minkowski). Suppose a quadratic form (a homogeneous polynomial of degree 2 in several variables) $Q(X) = \sum_{i,j} a_{ij} X_i X_j$ over \mathbb{Q} has a nontrivial root in each \mathbb{Q}_p and in \mathbb{R} . Then Q has a nontrivial root in \mathbb{Q} .

THEOREM (Global Kronecker-Weber). Let K/\mathbb{Q} be a finite abelian extension. Then $K \subset \mathbb{Q}(\zeta_n)$ for some n.

References

[1] George Bachman. Introduction to p-Adic Numbers and Valuation Theory. Academic Press, 1964.

[2] Nicolas Bourbaki. Commutative Algebra. Hermann, 1972.

[5] Serge Lang. Algebraic Number Theory. Springer, 1994.

[6] Kurt Mahler. Introduction to p-Adic Numbers and their Functions. Cambridge University Press, 1973.

[7] Jean-Pierre Serre. Local Fields. Springer, 1979.

[8] Jean-Pierre Serre. A Course in Arithmetic. Springer, 1996.

^[3] J.W.S. Cassels. Local Fields. Cambridge University Press, 1986.

^[4] Morris Kline. Euler and infinite series. Mathematics Magazine, 56(5):307-314, 1983.