Ok, we know what connections and covariant derivatives are. Now we can use them to get a map from the tangent space at one point to the manifold which is a local isomorphism. This is interesting because it gives a way of saying, “start at point and go five units in the direction of the tangent vector ,” in a rigorous sense, and will be useful in proofs of things like the tubular neighborhood theorem—which I’ll get to shortly.

Anyway, first I need to talk about geodesics. A **geodesic** is a curve such that the vector field along created by the derivative is parallel. In local coordinates , here’s what this means. Let the Christoffel symbols be . Then using the local formula for covariant differentiation along a curve, we get

so being a geodesic is equivalent to the system of differential equations