So, we saw in the previous post that completion can be defined generally for abelian groups. Now, to specialize to rings and modules.

**Rings **

The case in which we are primarily interested comes from a ring with a descending filtration (satisfying ), which implies the are ideals; as we saw, the completion will also be a ring. Most often, there will be an ideal such that , i.e. the filtration is -adic. We have a completion functor from filtered rings to rings, sending . Given a filtered -module , there is a completion , which is also a -module; this gives a functor from filtered -modules to -modules. (more…)