I will now review some differential geometry. Namely, I’ll recall what it means to have a connection in a complex vector bundle {E}, and construct its curvature as an {E}-valued global 2-form.

Now there is a fancy, clean approach to the theory of connections and curvature on principal bundles over a group (and a vector bundle basically corresponds to one such over GL_n). This approach is awesomely slick and highly polished: basically, it axiomatizes the intuitive idea that a connection is a way of identifying different fibers of a vector bundle (via parallel transport). So what is a connection on a principal bundle over a manifold? It’s a compatible system of defining whether tangent vectors are horizontal: the horizontal curves are those that correspond to a parallel transport. Then all the comparatively ugly index-filled results in the classical approaches get transformed into elegant, short results about Lie-algebra valued differential forms.

In fact, the whole Chern-Weil business can be developed using this formalism, and it becomes very slick. But I would like to do it in a slightly less fancy way, using the Cartan formalism: this essentially amounts to working in frames systematically. Here a frame is a local system of sections which is a basis for a vector bundle, and constitutes a generalized form of local coordinates. We can formulate the notions of connections and curvature in terms of frames (they’re systems of forms associated to each frame that transform in a certain way).

The theory has a super-optimal amount of index-pushing to it, but nonetheless, it is one I would like to gain comfort with, e.g. because Griffiths-Harris use it in their book. When one wants to actually prove concrete, specific results about certain types of manifolds (e.g. Kahler manifolds), it may be helpful to use local coordinates. An analogy: the theory of derived categories replaces the Grothendieck spectral sequence with the statement that the derived functor of the composite is the composite of the derived functors. But for concrete instances, the spectral sequence is still huge. (more…)