So, now to the next topic in introductory algebraic number theory: ramification. This is a measure of how primes “split.” (*No, definitely wrong word there…)*

**e and f**

Fix a Dedekind domain with quotient field ; let be a finite separable extension of , and the integral closure of in . We know that is a Dedekind domain.

(By the way, I’m now assuming that readers have been following the past few posts or so on these topics.)

Given a prime , there is a prime lying above . I hinted at the proof in the previous post, but to save time and avoid too much redundancy I’ll refer interested readers to this post.

Now, we can do a prime factorization of say . The primes contain and consequently lie above . Conversely, any prime of containing must lie above , since if is an ideal in a Dedekind domain contained in a prime ideal , then occurs in the prime factorization of (to see this, localize and work in a DVR). (more…)