It’s been a couple of weeks since I’ve posted anything here. I’ve been trying to understand homotopy theory, especially the modern kind with model categories. The second semester of my algebraic topology course is slated to cover that, to which I am looking forward. Right now, we are learning about spectral sequences. I have also been trying to understand Tate’s thesis, unsuccessfully.

Today, I’d like to prove a fairly nontrivial result, due to Freyd, following MacLane; this is a post that, actually, I take from a recent change I made to the CRing project. This gives a sufficient condition for the existence of initial objects.

Let be a category. Then we recall that if for each , there is a *unique* . Let us consider the weaker condition that for each , there exists *a* map .

Definition 1Suppose has equalizers. If is such that for each , then is calledweakly initial.

We now want to get an initial object from a weakly initial object. To do this, note first that if is weakly initial and is any object with a morphism , then is weakly initial too. So we are going to take our initial object to be a very small subobject of . It is going to be so small as to guarantee the uniqueness condition of an initial object. To make it small, we equalize all endomorphisms.

Proposition 2If is a weakly initial object in , then the equalizer of all endomorphisms is initial for . (more…)