Weyl’s character formula (to be proved shortly) gives an expression for the character of a finite-dimensional simple quotient of a Verma module. In here, we will express the character of the simple quotient using Verma module characters. Next time, we will calculate the coefficients involved.
Filtration on highest weight modules
Let be any highest weight module with highest weight
. Then
is a quotient of
, so the Casimir
acts on
by scalar multiplication by
.
Suppose we have a composition series
with successive quotients simple module . Then
acts on the successive quotients by scalars that we compute in two different ways, whence by yesterday’s formula:
In fact, such a filtration exists:
Proposition 1
has a finite filtration whose quotients are isomorphic to
, where
(which we write as
) and
satisfies the boxed formula.
In general, this follows simply because every element in has finite length, and the
are the only candidates for simple modules!
Theorem 2 The category
is artinian.
The only proofs I can find of this use Harish-Chandra’s theorem on characters though, so I’ll follow Sternberg in proving the proposition directly. (I hope later I’ll come back to it.) (more…)