Let be an algebraically closed field, and
a projective variety over
. In the previous two posts, we’ve defined the Picard scheme
, stated (without proof) the theorem of Grothendieck giving conditions under which it exists, and discussed the infinitesimal structure of
(or equivalently of the connected component
at the origin).
We saw in particular that the tangent space to the Picard scheme could be computed via
by studying deformations of a line bundle over the dual numbers. In particular, in characteristic zero, a simply connected smooth variety has trivial . To get interesting
‘s, we should be looking for non-simply connected varieties: abelian varieties are a natural example.
Let be an abelian variety over
. The goal in this post is to describe
, which we’ll call the dual abelian variety (we’ll see that it is in fact smooth). We’ll in particular identify the line bundles that it parametrizes. Most of this material is from David Mumford’s Abelian varieties and Alexander Polischuk’s Abelian varieties, theta functions, and the Fourier transform. I also learned some of it from a class that Xinwen Zhu taught last spring; my (fairly incomplete) notes from that class are here.
7. Translation-invariant line bundles
In general, by definition, of a variety classifies line bundles that are algebraically equivalent to zero: those which can be connected to the trivial line bundle by a connected algebraic family.
For an abelian variety, however, there is another description of line bundles in : they are the translation-invariant ones.
Theorem 7 Given an abelian variety
, the line bundles on
algebraically equivalent to zero are precisely the translation-invariant ones: that is, the line bundles
such that
for
where
is translation by
.
Before proving the theorem, let’s try to interpret it. Suppose given a translation-invariant line bundle . Then if
is the multiplication map and
are the projections, then the line bundle
on is trivial. Indeed, since it is trivialized on
, it is classified by a map
which is constant at zero, since the restriction to each fiber is trivial. (This argument is actually a general “rigidity lemma” that can be proved directly, but we’re assuming existence of the Picard scheme anyway.) This line bundle on
is trivial, and we can even choose a canonical trivialization once we’ve chosen an isomorphism
. (Here
denotes the fiber above
.)
In other words, we conclude that the one-dimensional -vector spaces
are equipped with isomorphisms
Moreover, these isomorphisms satisfy the natural coherences. For example, given , we have a commutative diagram
The commutativity follows because the two ways of going around the diagram represent two different trivializations of a trivial line bundle on which agree at the origin.
The intuition is that a translation-invariant line bundle is therefore a categorified character on the abelian variety . (A general line bundle is more like a quadratic form.) More precisely, we get a symmetric monoidal functor
where is the symmetric monoidal category of one-dimensional
-vector spaces, and
is regarded as a discrete category. (We could replace
by an arbitrary
-scheme.)
The following result generalizes the classical orthogonality of characters and will be important in the general theory.
Theorem 8 If
is translation-invariant on
and nontrivial, then
.
Proof: In fact, we know that if is the multiplication map, then
so that we get a natural map of graded vector spaces
by the Künneth formula. Since has a section, this map is necessarily injective.
But now we have a problem. Unless , there is no way for this to happen. Namely, if
has its first nonvanishing entry at
, then the above injection implies that its first nonvanishing entry occurs at least at grading
. The conclusion is that
.
Now however corresponds to
under the “shearing” automorphism
of
, and so we actually have two isomorphisms:
which together imply that must be one-dimensional. Since
is translation-invariant, this implies it must be trivial.
8. Proof of the main result: first step
Let’s start by showing that a line bundle algebraically equivalent to zero is translation-invariant. In fact, to say that
is algebraically equivalent to zero is to say that there is a connected
-variety
and a line bundle
restricting to
at
and restricting to the trivial bundle at
. Without loss of generality, we can assume
is trivialized along
.
We have to show that is translation-invariant, e.g. that
on
, with notation as above. To do this, we can form this construction in a family: that is, we can form the line bundle
If we show that this line bundle is trivial, then we will be done. This line bundle has the property that it is trivialized on , on
, and on
. The theorem of the cube thus implies that it is trivial everywhere.
Alternatively (and this is equivalent to the theorem of the cube), we could think of this line bundle as defining a map
and arguing that it had to be the trivial map. (Without loss of generality, is projective and integral.) In fact, the map
is a pointed map, and hence, by a rigidity lemma, a homomorphism of abelian varieties. Since it annihilates
and
, it is the zero map.
9. The converse direction
Conversely, we would like to show that every line bundle on which is translation-invariant is also algebraically equivalent to zero. The argument will also give us smoothness of
as a by-product. The strategy is to choose an ample line bundle
on
and consider the map
where is translation by
. More precisely, this comes from the family
on
. This map is a pointed map, hence a homomorphism: this is the theorem of the cube again. Observe that since
is connected, it takes values in
.
Our main goal is:
Theorem 9 The scheme
is smooth and therefore an abelian variety. For an ample line bundle
,
is an isogeny, and every translation-invariant line bundle is in the image.
Let’s start by showing that has finite kernel. In other words, we have to show that if
is an abelian subvariety,
does not vanish identically on
. But then we would have a translation-invariant ample line bundle on
, which is absurd: replacing
by a sufficiently high tensor power, we always have lots of global sections and in particular a nonvanishing
.
Next, we need to show that if is any translation-invariant line bundle on
, then there exists
such that
Let’s suppose the contrary. In this case, the strategy is to consider the family of line bundles parametrized by given by
which by assumption is never trivial. More precisely, we consider the line bundle
We will consider the cohomology of along the vertical and on the horizontal fibers:
- On the fibers
, the bundle
restricts to
and is by assumption never trivial: in particular the cohomology vanishes identically.
- On the fibers
, the bundle restricts to
and has nonvanishing cohomology for a finite number of
(i.e., those where
).
On the one hand, the first bullet point implies that is identically zero, by the theory of cohomology and base change. By the Leray spectral sequence, we conclude that
has no cohomology at all.
On the other hand, the second bullet point (together with cohomology and base change) implies that is supported on a nonempty finite set of closed points, and in particular its (derived) global sections are nontrivial. In other words, the Leray spectral sequence degenerates and
. This is a contradiction, and we conclude that
is a surjection, and that every translation-invariant line bundle is in .
In other words, we have a surjective map with finite kernel onto
, and the consequently
has the same dimension as
. The last thing to check is smoothness. This will follow if we show that
(and we’ll in fact be able to conclude equality). To see this, let’s appeal to a technique common in algebraic topology: note that the cohomology ring
is a Hopf algebra that comes from dualizing the multiplication law on . It is in fact a graded Hopf algebra with
in dimension zero: such so-called connected Hopf algebras behave regularly and were studied in a well-known paper of Milnor and Moore. (In characteristic zero, the commutative ones are tensor products of exterior and polynomial algebras.) In particular, the desired inequality on the tangent space will follow from the fact that this Hopf algebra vanishes above
and the next result:
Lemma 10 Let
be a graded, connected commutative Hopf algebra with
for
. Then
.
Proof: In fact, if are linearly independent, then I claim that
In fact, suppose that this vanished. A key observation is that the are primitive simply for dimensional reasons: the comultiplication carries them to
. Therefore, each
induces a map from the exterior Hopf algebra
. Tensoring them together, we get a map
This map is injective. In fact, if this map were not injective, it would have a kernel, and the element of smallest dimension in the kernel of a map of connected coalgebras is always primitive. So if were not injective, then
would have to kill a primitive element. However, the only primitive elements in the tensor product of exterior algebras are the linear combinations of the
: this follows by the dual space to the primitives consists of the indecomposables in the dual Hopf algebra (which is another exterior algebra). Given that the
are linearly independent in
, we conclude that the map is injective.
Leave a Reply