The purpose of this post is to describe an application of the general intersection theory machinery (for curves on surfaces) developed in the previous posts: the Weil bound on points on a curve over a finite field.

**1. Statement of the Weil bound**

Let be a smooth, projective, geometrically irreducible curve over of genus . Then the **Weil bound** states that:

Weil’s proof of this bound is based on intersection theory on the surface . More precisely, let

so that is a smooth, connected, projective curve. It comes with a Frobenius map

of -varieties: in projective coordinates the Frobenius runs

In particular, the map has degree . One has

representing the -valued points of as the fixed points of the Frobenius (Galois) action on the -valued points. So the strategy is to count fixed points, using intersection theory.

Using the (later) theory of -adic cohomology, one represents the number of fixed points of the Frobenius as the Lefschetz number of : the action of on and give the terms . The fact that (remaining) action of on the -dimensional vector space can be bounded is one of the Weil conjectures, proved by Deligne for general varieties: here it states that has eigenvalues which are algebraic integers all of whose conjugates have absolute value .

**2. Some divisors on the square of **

Let’s consider the divisor given by the image of the closed immersion

In particular, is a smooth curve. The set-theoretic intersection of with the diagonal divisor clearly consists of the fixed points of . Moreover,

because and intersect transversely at all points where they intersect. The tangent space to is “horizontal” (the Frobenius has zero differential) while that to is “diagonal.” So the main goal is to obtain bounds on the intersection pairing . The Hodge index theorem provides a powerful tool in this regard.

Namely, we know that has the following property:

- The intersection with the “horizontal” divisor is given by , the degree of the Frobenius.
- The intersection with the “vertical” divisor is . More generally, this is true for the graph of any morphism.

This raises a more general question: given a divisor on with known “horizontal” and “vertical” intersection numbers, can we bound ? This is something that we can answer using the Hodge index theorem proved in the previous post.

Namely, let’s work in the group of rational divisors modulo numerical equivalence. We have an orthogonal decomposition

Here is perpendicular to . Using the relations , can be computed from the knowledge of the “horizontal” and “vertical” intersection numbers of via

In particular, we get

But now the Hodge index theorem tells us that the intersection pairing is negative definite on —indeed, is an ample divisor, so that by Cauchy-Schwarz:

Let’s now simplify this a bit. We had the self-intersection of the diagonal in is the Euler characteristic. One can see this by observing that is the degree of the normal bundle to the diagonal embedding ; this is the tangent (or anticanonical) bundle to , which has degree .

A simple computation shows therefore

**3. The Weil bound**

Let’s now apply (2) and prove the Weil bound. Let’s now apply this to the case when is the graph of the Frobenius. For , we get . The normal bundle to the imbedding

is exactly , which has degree .

In this case,

and we conclude with:

Theorem 2 (Weil bound)For the smooth projective curve , one has

## Leave a Reply