This is the second post in a series on Kervaire’s paper “A manifold which does not admit any differentiable structure.” In the previous post, we described a form on the middle cohomology of a -connected
-dimensional manifold, for
. In this post, we can define the Kervaire invariant of such a framed manifold, by showing that this defines a form. I’ll try to sketch the proof that there is no framed manifold of Kervaire invariant one in dimension 10.
1. The form is a quadratic refinement
Let’s next check that the form defined in the previous post (we’ll review the definition here) is actually a quadratic refinement of the cup product. Precisely, this means that for
, we want
In particular, this implies that descends to a function on
, as it shows that
of an even class is zero in
. The associated quotient map
is, strictly speaking, the quadratic refinement.
In order to do this, let’s fix . As we saw last time, these can be obtained from maps
by pulling back the generator in degree . Let
be a map associated to
, and let
be a map associated to
. We then have that
for the generator of
. As we saw, this was equivalent to the definition given last time.
In order to compute , we need a map
realizing
. In fact, we can use the composite
that is, we can use the monoidal product on . The claim that this map pulls back the generator of
to
is formal once one notes that
is a Hopf algebra from this monoidal product, and the generator in degree
is primitive because it is of minimal degree.
So the last thing we need to do is to understand , where
is constructed as claimed. Equivalently, we need to understand where
pulls back to under
Let be the generator. Then the claim is that under the pull-back of the multiplication,
and pulling this back under would give
which is precisely the claim of the lemma.
In order to prove this, we need to understand better the Hopf algebra structure of . Fortunately, this is equivalent to understanding the Pontryagin product structure on
, which by the theorem of Bott and Samelson is a tensor algebra
on a generator
in degree
(dual to
). The coproduct of
dualizes to understanding the different decompositions of
as a product, and a little linear algebra gives (1).
What we’ve now done is to construct, on a -connected
-manifold which admits a framing, a quadratic refinement
of the intersection pairing.
Definition 4 The Arf invariant of
is the value (either
or
) that
assumes more often. The Kervaire invariant of a framed
-connected
-manifold is the Arf invariant of the quadratic refinement
.
2. The main results
The main results of Kervaire’s paper are:
Theorem 5 (Kervaire) A smooth
-connected framed
-manifold has Kervaire invariant zero. However, there exists a combinatorial 4-connected
-manifold with Kervaire invariant one.
We note that this invariant is a homotopy invariant.
There is a bit of a wrinkle in what I’ve been saying, since so far I have not explained what the Kervaire invariant of a combinatorial 4-connected 10-manifold is. This is something Kervaire defines in his paper in exactly the same way. That is, he shows that any class in can be realized by a map
. This is not obvious. We still find, by Poincaré duality, that
and the obstruction to realizing a cohomology class from a map into is an element in
; consequently any cohomology class can be realized this way. This additional fact is needed to prove existence of the above quadratic refinement. In the framed smooth case, we could prove that cohomology classes in
were realized by maps into
by using the stable splitting of
.
The major conclusion from this is:
Corollary 6 There exists a 4-connected combinatorial 10-manifold
which is not homotopy equivalent to any smooth 10-manifold.
Proof: In fact, take for the combinatorial 10-manifold with Kervaire invariant one. Then if
had the homotopy type of a smooth 10-manifold
, the claim is that
would have Kervaire invariant zero, which is a contradiction. To see this, we need only see that
admits a framing: in fact, any 4-connected smooth 10-manifold
admits a framing.
This in turn is a consequence of the following argument. We note that . Since
by Bott periodicity, we conclude that the tangent bundle of is stably trivial (even trivial) over the 5-skeleton. Observe that
is homotopy equivalent to the 5-skeleton, so that the tangent bundle of
is stably framed over
. The obstruction to extending the framing over
is an element of
.
Now, the claim is that this obstruction is killed by the -homomorphism
Another way of saying this is that is framed, so the boundary
of a small ball surrounding
gets a framing, classified by the obstruction class in
. To say that this class is killed by
is to say that this framed
is a framed boundary: but that’s easy, take
. Here, one uses the geometric interpretation of the
-homomorphism, as the map that turns framed spheres—framed by an element of
—into framed manifolds.
However, by Adams’s results in “On the groups IV,” the
-homomorphism is injective
. It follows that the obstruction vanishes, so the manifold is actually (stably) framed.
The above argument via the -homomorphism seems a little ad hoc, but it’s one of the key observations that Kervaire and Milnor make in “Groups of homotopy spheres I” to argue that a homotopy sphere is stably parallelizable.
3. Sketch of a proof
Now let’s sketch the proof of Kervaire’s theorem. We need to show that any framed -connected
-manifold has Kervaire invariant zero. Although we have not shown it, the Kervaire invariant is an actually an invariant of framed cobordism. That is, any framed
-manifold can be made framed cobordant (using surgery) to a framed
-connected one, to which we can apply Kervaire’s construction to get an invariant in
. In fact, the Kervaire invariant is defined as a map
Kervaire’s theorem states that this map is zero. How can this be proved? The Kervaire invariant of an exotic (i.e., homotopy) -sphere is clearly zero, so it would suffice to prove:
Theorem 7 (Kervaire) Every framed
-manifold is framed cobordant to a homotopy sphere.
In fact, this is true with replaced by any dimension except a small finite set: this is a consequence of surgery theory and the solution to the general Kervaire invariant problem.
Proof: It is only of interest to consider on the 2-component of
. It is known that on the 2-components, every element in
is a product of
(the Hopf map) and an element of
. This is a nontrivial result, but it can be proved by computing the Adams spectral sequence out to that dimension and using the multiplicative structure: the differentials vanish in that range. In geometric manifold, this means that our framed
-manifold
can be assumed to be of the form
, for
an appropriate framed
-manifold.
Anyway, Milnor and Kervaire prove (using surgery again) that any odd-dimensional framed manifold is framed cobordant to a homotopy sphere. Since I don’t yet understand surgery very well, and since I will be giving my next Kan seminar talk on the subject, I’ll defer a discussion of this fact to a later post. It tells us that can be assumed to be an exotic
-sphere.
In other words, we find that any framed 10-manifold (in the 2-component) is of the form for
an exotic
-sphere. We’d like to make this into an exotic
-sphere. But we can do framed surgery on the generator of
. Since surgery on
(for the generator of
) produces an
, this operation on
produces a homotopy
-sphere.
Finally, Kervaire describes a construction of a topological 10-manifold with Kervaire invariant one. Here the strategy is to “plumb” two copies of the tangent bundle of together; the boundary is an exotic sphere. Coning off this exotic sphere gives a topological manifold which he checks is of Kervaire invariant one; consequently it is not smoothable. I’ll try to say a little more about this in a later post.
Leave a Reply