I’ve been reading an interesting paper of Adams, Haeberly, Jackowski, and May on the Atiyah-Segal completion theorem. One of the surprising features of this paper is the heavy use of pro-abelian groups to deal with the inconvenient fact that inverse limits are generally not exact in abelian groups. I’d like to blog about the proof in this paper, but first I’d like to go through some of the background on pro-objects. In this post, I’ll describe the entirely dual picture of -objects, which is (at least for me) easier to understand.
1. Definition
Let be a small abelian category. Then there is an imbedding
of into the larger category of ind-objects of
. One benefit of doing this is that
is a larger abelian category containing
, in which there are enough injectives.
I always found the traditional definition of these confusing, so let me describe another definition (which happens to generalize nicely to the -categorical case, and which is where I learned it from).
Let be any category. Then we know that the category
is the “free cocompletion” of
: that is, given any cocomplete category
, we have an equivalence
between functors and colimit-preserving functors
. The
-category is defined to have an analogous universal property, except that one just takes filtered colimits.
That is, is a category together with a fully faithful imbedding
with the properties:
admits all filtered colimits.
- Given any category
admitting all filtered colimits, there is an equivalence of categories
where
means “preserving filtered colimits.”
One can define, in fact, to be the smallest subcategory of
which contains the image of the Yoneda imbedding and which is closed under filtered colimits. A proof of the relevant universal property, in a slightly different context, is described in this post.
2. Some abstract nonsense
The next step is to understand how this indization process behaves with respect to limits and colimits.
Proposition 1 If
admits finite limits, then
admits finite limits as well, and the imbedding
preserves finite limits.
Proof: Note that because the Yoneda imbedding is left exact, preserves all limits.
Let’s start by showing that admits finite limits. For instance, let’s show that it admits finite products. Given
, we can write (in
)
for ranging over filtered categories and
. Now
, considered as an object of
exists, and the only question is to show that it actually lives in
, i.e. is a filtered colimit of elements in
. But this follows from:
It is a little trickier to show that admits equalizers. To do this, we’ll use a slightly different argument. (Note: for a somewhat simpler approach, see the proof of the next proposition.)
- Fix
. Consider the collection of
such that for any pair of maps
, the equalizer in
lives in
. This contains
(as
has finite limits), and it is closed under filtered colimits. This follows from two facts: one, that filtered colimits in
are exact, and two, that
is a compact object of
.
- It follows from this that for any
and any
, any diagram
has an equalizer in
which actually lives in
.
- Now, consider the collection of all
such that, for any
, any equalizer diagram
has the property that its limit (in
) actually lives in
. This contains
(by the previous step) and is closed under filtered colimits, as filtered colimits in
are exact.
The three steps above show that admits finite limits whenever
does.
We get a little more, in fact:
Proposition 2 If
admits finite limits, then the finite limits in
(which exist by the previous result) commute with filtered colimits.
Proof: In fact, we saw implicitly in the previous proof that preserves finite limits: that is, to compute a finite limit of objects in
, one just has to compute the limit as a presheaf, and it automatically still lands in
. So this follows from the fact that finite limits commute with filtered colimits in
.
Our next goal is to show that the indization of an abelian category is abelian, and that the inclusion is exact. We will first need an analog of this result for colimits.
Proposition 3 If
admits finite colimits, then so does
and the inclusion
preserves them.
Proof: This is something a bit special: in general, the map does not preserve colimits. Let’s start by showing that it is true here. For instance, let’s show that if
and we have a coequalizer diagram in
,
then it is a coequalizer in .
How can we do this? We need to show that, for any , the following diagram is exact (in sets):
But we know that the above diagram is exact when . Also, exactness of the above diagram is preserved under filtered colimits in
(since homming out of an object in
commutes with filtered colimits in
). Consequently, the above diagram is exact for all
, which proves that
is still a colimit in
.
Now we need to generalize this to show that any pair of morphisms in (not necessarily in
) admits a coequalizer. (Coproducts are similar but easier.) Here the point is that we can write any morphism
in
as a filtered colimit of maps
in itself. This is not too hard to see, once one notes that the representable objects in
are compact, and every object in
is a filtered colimit of them.
So, let’s say we have two maps in
. By a similar argument, we get a family of pairs of maps
in
whose colimit is
. Observe that, by the previous step, each such pair
admits a coequalizer in
: it’s the coequalizer in
, in fact.
Finally, in , we get that the coequalizer of
is the filtered colimit of the coequalizers
.
3. Ind of an abelian category
We are now ready to show that indization preserves abelianness. A general remark: being an abelian category is a property of a category, not extra data. One can, for instance, recover the additive structure on the hom-sets, using the fact that in an abelian category, the map is an isomorphism.
Proposition 4 If
is abelian, then so is
, and the imbedding
is exact.
Proof: In fact, we’ve seen that in this case, the map
commutes with finite limits and colimits. So all we have to do is prove that is abelian.
To start with, note that it has a zero object: the zero object in . Moreover, for any
, the map
is an equivalence, as one sees by reducing to the case and taking filtered colimits. This already induces the structure of an abelian monoid in each of the hom-sets
for
. To see that these abelian monoids are groups, write
for
. Then we have
because each is compact. Since each of the
is actually an abelian group (not just an abelian monoid), so is
from the above equation.
So let be a map in
. We have to show that the cokernel of the kernel is the kernel of the cokernel. In this case, we can write
as a filtered colimit of maps
in
, and we know that
because is abelian, and because
preserves finite limits and colimits. Taking filtered colimits (which commute with finite limits and colimits!), we find that
There are several nice properties about , for
abelian. For instance,
has all colimits (as it has finite ones and filtered cones). It is also generated under filtered colimits by the objects in
, which are compact; thus, is a presentable category. This means that a number of nice things happen: the adjoint functor theorem applies to
, for instance.
As another example, we find:
Proposition 5
has enough injectives.
This is a consequence of a theorem of Grothendieck: a presentable abelian category where filtered colimits are exact has enough injectives.
Most of the ideas described here go through perfectly well in the -categorical setting: for instance, the analogous result is that the indization of a stable
-category is stable (and the inclusion is exact).
4. Ind-objects as presheaves
There is an alternative description of . This description makes the additive structure clear, but it is far from obvious that the following description yields an abelian category.
Proposition 6 There is an equivalence (of abelian categories) between
and the category
of left-exact presheaves of abelian groups on
.
Proof: We have a variant of the Yoneda imbedding
which takes values in left-exact functors: i.e., those that send cokernel diagrams to kernel diagrams. Since has filtered colimits (take them pointwise), the universal property of the
-category extends to give a functor
which is additive, and preserves filtered colimits. The claim is that this functor is an equivalence.
To prove this, we have to check two things:
- The Yoneda imbedding
takes values in compact objects.
is generated under filtered colimits by the image of Yoneda.
The fact that checking these two things is enough was sketched in this post, in a different context; I’ll omit these details.
How can we check these things?
- The Yoneda imbedding takes values in compact objects. This is formal, because of the Yoneda lemma: homming out of a representable functor is evaluation.
- What’s less formal is that a left-exact functor is a filtered colimit of representable ones. We can see this as follows: any functor in
is a “canonical colimit” over the “category of elements” of this presheaf. That is, given a presheaf
, we take the category whose objects are maps
(for
the representable presheaf on
) and whose morphisms are commutative squares. It is a general fact that
is the colimit of the representable functors
indexed by this “diagram of elements.”The whole point is that, in the left-exact case, the diagram of elements of
is actually filtered. That’s not too hard. Given two maps
, we can imbed them in
, because
is additive. Given two maps
, we can fit this in a diagram
using the left-exactness of
. Together, these two arguments show that the “category of elements” is actually filtered.
Leave a Reply