The next thing I’d like to do on this blog is to understand the derived -category of an abelian category.

Given an abelian category with enough projectives, this is a stable -category with a special universal property. This universal property is specific to the -categorical case: in the ordinary derived category of an abelian category (which is the homotopy category of ), forming cofibers is not quite the natural process it is in (in which it is a type of colimit), and one cannot expect the same results.

For instance, , and given a triangulated category and a functor taking exact sequences in to triangles in , we might want there to be an extended functor

where is the ordinary (1-categorical) bounded derived category of . We might expect this by the following rough intuition: given an object of we can represent it as obtained from objects in by taking a finite number of cofibers and shifts. As such, we should take the image of to be the appropriate combination of cofibers and shifts in of the images of . Unfortunately, this does not determine a functor because cofibers are not functorial or unique up to unique isomorphism at the level of a trinagulated category.

The derived -category, though, has a universal property which, among other things, makes very apparent the existence of derived functors, and which makes it very easy to map out of it. One formulation of it is specific to the nonnegative case: is obtained from the category of projective objects in by freely adjoining geometric realizations. In other words:

Theorem 1 (Lurie)Let be an abelian category with enough projectives, which form a subcategory . Then has the following property. Let be any -category with geometric realizations; then there is an equivalence

between the -categories of functors and geometric realization-preserving functors .

This is a somewhat strange (and non-abelian) universal property at first sight (though, for what it’s worth, there is another more natural one to be discussed later). I’d like to spend the next couple of posts understanding why this is such a natural universal property (and, for one thing, why projective objects make an appearance); the answer is that it is an expression of the Dold-Kan correspondence. First, we’ll need to spend some time on the actual definition of this category.

**1. The -category of chain complexes**

Let be an abelian category, or more generally an additive category. Then one can contemplate a category of -valued chain complexes. Observe that given , there is a natural *chain complex* (in abelian groups) of maps

such that . In other words, naturally acquires the structure of a *differential graded* category: there is a chain complex, rather than simply a set, of maps between any two objects. One can recover the set of maps between any two objects by taking of this chain complex.

A differential graded category can be used to manufacture a simplicial category. Namely, we have an equivalence of categories

between nonnegatively graded chain complexes of abelian groups and simplicial abelian groups. (This is the Dold-Kan correspondence in the classical form.) This construction is lax monoidal via the Alexander-Whitney maps (though not actually monoidal), and consequently, given a category enriched over , we can get a category enriched over simplicial abelian groups (in particular, over Kan complexes).

It thus follows that, for any additive category , we can make enriched over , and applying the truncation functor , we can make enriched over . In view of the Dold-Kan equivalence, we find:

Proposition 2There is a natural structure on of a simplicial category.

This is exactly what we want from an -category: we want a mapping space (i.e., a Kan complex or topological space) between any two objects. So we can take the homotopy coherent nerve of this, to get an -category of chain complexes in , which I’ll write as to avoid confusion.

We can say a little more.

Proposition 3is a stable -category, whose suspension functor is given by shifting by .

This is somewhat interesting—we get the classical shift functor out of the -categorical context. Also, we get the classical fact that the *homotopy*category of chain complexes is a triangulated category. (After localizing this at the quasi-isomorphisms, one gets to the classical derived category.)

How might we prove such a result? We’re going to try to understand what pushouts and pull-backs look like in . We will make a simplifying assumption: is a full subcategory of an abelian category , and is idempotent complete and contains pull-backs under -epimorphisms. The particular examples we have in mind are either an abelian category or the category of projective (or injective) objects in an abelian category, so we could just restrict to those cases.

First, observe that chain homotopy equivalences are actually equivalences in —in fact, we can think of the 2-morphisms in as being given by chain homotopies (between the 1-morphisms, which are ordinary morphisms of chain complexes).

So let’s consider a square in .

This is, in particular, a homotopy commutative square of chain complexes, and by replacing it with a weakly equivalent square we may assume that it is commutative on the nose. We want to show that it is a homotopy push-out if and only if it is a homotopy pull-back. If we replace by something up to homotopy, we can assume that it is *degreewise split* (e.g. replace it by the mapping cylinder). In this case, we have to show that the square is homotopy cartesian if and only if it is homotopy cocartesian.

However, the point is that being homotopy cartesian in an -category can be tested on the level of hom-spaces. That is,

needs to be a homotopy pull-back of topological spaces for any . (Here means the simplicial hom.) Since is a degreewise split surjection, one can show that the map is a Kan fibration: this corresponds to the fact that a surjection of simplicial abelian groups is a Kan fibration. So another way of saying this is that we have a homotopy equivalence of Kan complexes

for every . This is equivalent to saying that the *chain complexes* of morphisms

is a weak equivalence (of chain complexes of abelian groups), for every : that is, by the Dold-Kan correspondence in nonnegative homological degrees, and by shifting in general.

Since admits pull-backs under surjections, this is equivalent to the condition that the map

be a homotopy equivalence (i.e., an equivalence in this -category). In other words, we find that is the homotopy pull-back. Replacing the square by an equivalent one, we may assume that this is true up to *isomorphism*: that is, that .

The condition that the analogous square be a push-out is that

be a homotopy equivalence. But if is surjective and is an isomorphism, then is an isomorphism. So we find that a pull-back square is a push-out square. The converse is similar.

Technically, we should also show the existence of finite limits and colimits, and pointedness. But this reduces to the existence of coproducts and products (which is straightforward—they are as in the 1-categorical case) and the zero object is the zero complex.

**2. Towards the derived -category**

The classical *derived category* of an abelian category is usually constructed in two steps. First, one constructs the *homotopy category* of chain complexes in : the objects are chain complexes and morphisms are homotopy classes of maps. This is already a triangulated category, but it’s not quite what we want. Then, one inverts the quasi-isomorphisms to get the derived category, and shows that this localization process preserves the triangulatedness.

That’s not the best approach in this context: while formally adjoining inverses can be done in -categories, the philosophy that seems to predominate is that we should find localizations as *subcategories*. This is the philosophy of *Bousfield localization*, in which one localizes the stable homotopy category at morphisms inducing isomorphisms in -homology for some spectrum . This localization is equivalent to the subcategory of “-local objects” in the original stable homotopy category.

More to the point, there is an alternative description of the classical derived category, valid when there are enough projectives:

**Description:** The derived category (bounded-below) of is the homotopy category of the category of chain complexes of projectives in .

This is nice, because a quasi-isomorphism of projectives is automatically a homotopy equivalence. So there’s no “formal inversion” of morphisms necessary: one just restricts to a subcategory. This motivates the following definition:

Definition 4 (Lurie)Given an abelian category with enough projectives, let be the subcategory of projectives. Then we define thederived -category

to be the nerve of the subcategory of consisting of bounded-below complexes.

It is evident from this definition (and unraveling of what the morphism spaces are in ) that the homotopy category of this coincides with the second description of the classical derived category.

The derived -category, as stated above, has a powerful universal property, which makes it much easier to map out than its 1-categorical shadow, the classical derived category. In the next post, we’ll see how this works.

January 15, 2014 at 3:51 pm

Typo in definition 4: one of the A’s should be a P.