Let be a
-algebra. A genus is a homomorphism
where is the oriented cobordism ring. In other words, a genus
assigns to every compact, oriented manifold
an element
. This satisfies the conditions:
.
.
for any manifold-with-boundary
.
A fundamental example of a genus is the signature , which assigns to every manifold
of dimension
the signature of the quadratic form on
. (Also,
is zero on manifolds whose dimension is not divisible by four.)
1. Genera and power series
I’d like next to describe the connection between genera and power series. This is very classical, but it’s going to be illuminated by some of the material on formal group laws discussed in the past.
A -valued genus factors through the rationalization
. There is an isomorphism
where we can take the even-dimensional complex projective spaces as polynomial generators. In particular, a genus
is uniquely determined by specifying
. It follows that we can extract a power series
Moreover, this power series determines the genus.
Definition 1 The series
is called the logarithm of the genus
.
The word “logarithm” is adequately explained thanks to the discussion of formal groups earlier. Recall that there is a map
from the complex cobordism ring to the oriented one. After tensoring with , we have a surjection
because the former is generated by the complex projective spaces and the latter by the even-dimensional complex projective spaces.
In any event, a genus gives by composition a map
and since is the Lazard ring, this classifies a formal group law over the
-algebra
. However, since
is a
-algebra, we know that the formal group law classified has a logarithm. By naturality, the logarithm is just the push-forward of the logarithm in
; we’ve seen that said logarithm is
The push-forward of this to is precisely what we called the logarithm above, since the odd-dimensional projective spaces are zero in
(in fact, even in
).
The formal group law on that the genus determines is given by
2. Power series again
Nonetheless, this is not the usual way in which one associates a genus to a power series. Given an even power series , one can construct a genus in the following manner.
Given , one can define a stable characteristic class of real vector bundles. Let
be a real vector bundle, and write formally
where the are the “Chern roots” of
. Then, one defines
This is symmetric in the and invariant under the transformation
, so it defines an honest stable, multiplicative characteristic class of real vector bundles.
Definition 2 Given the stable characteristic class
as before, define a genus on manifolds by sending
In other words, one applies the stable characteristic class to the tangent bundle , and “integrates” over
(i.e., pairs with the fundamental class). One has to check that this is an honest genus; the key observation is that
vanishes for a boundary
as
. Thus,
by Stokes’s theorem.
Proposition 3 Every genus arises from a unique even power series in this way.
In fact, given a genus , we can explicitly compute the associated even power series (and in fact, express it in terms of the
earlier). We want to find an power series
such that the associated genus, which I’ll write
, is equal to
: that is, we want
for each . Now, the tangent bundle of
satisfies
where for
the hyperplane class. It follows that we can compute the stable characteristic class:
In particular, we find that is the coefficient of
in
: that is, for any even power series
, we have
So, if we want , we need to find a power series
such that
But this is just Lagrange inversion again: it tells us that we should have
since . This is the basic relation between the two power series
and
, and it shows that any genus comes from an even power series in this way.
Example: The signature is a
-valued genus, which assigns to every
the number one. What is the corresponding power series
? First, the logarithm is given by the series
Consequently, we get
In particular, we find that the signature of a manifold is computed by the genus associated to the power series ; this is the Hirzebruch signature theorem.
Leave a Reply