The topic of this post is a curious functor, discovered by Deligne, on the category of sheaves over the affine line, which is a “sheafification” of the Fourier transform for functions.

Recall that the classical *Fourier transform* is an almost-involution of the Hilbert space . We shall now discuss the *Fourier-Deligne transform*, which is an almost-involution of the bounded derived category of -adic sheaves, . The Fourier transform is defined by multiplying a function with a character (which depends on a parameter) and integrating. Analogously, the Fourier-Deligne transform will twist an element of by a character depending on a parameter, and then take the cohomology.

More precisely, consider the following: let be a LCA group, its dual. We have a canonical character on given by evaluation. To construct the Fourier transform , we start with a function . We pull back to , multiply by the evaluation character defined above, and integrate along fibers to give a function on .

Everything we’ve done here has a sheaf-theoretic analog, however: pulling back a function corresponds to the functorial pull-back of sheaves, multiplication by a character corresponds to tensoring with a suitable line bundle, and integration along fibers corresponds to the lower shriek push-forward. Much of the classical formalism goes over to the sheaf-theoretic case. One can prove an “inversion formula” analogous to the Fourier inversion formula (with a Tate twist).

Why should we care? Well, Laumon interpreted the Fourier transform as a suitable “deformation” of the cohomology of a suitable sheaf on the affine line, and used it to give a simplified proof of the main results of Weil II, without using scary things like vanishing cycles and Picard-Lefschetz theory. The Fourier transform also behaves very well with respect to perverse sheaves: it is an auto-equivalence of the category of perverse sheaves, because of the careful way in which it is calibrated. Its careful use can be used to simplify some of the arguments in BBD that also rely on other scary things.

**4.1. The Artin-Schreier sheaf**

The “twisting” mechanism we shall need for this will be the *Artin-Schreier sheaf.*

Let be *any* scheme, and let be a group.

Definition 31An-torsoris a sheaf of sets on the étale site of , together with an action

which islocally trivial: there is an étale cover of on which becomes -isomorphic to the trivial torsor (where is considered as a constant sheaf).

As usual, it follows that torsors are classified by (in the étale topology!), which is defined by cocycles and coboundaries in the non-abelian case (by the spectral sequence, this is also the derived functor for an abelian sheaf). When is finite, an -torsor corresponds to a finite, continuous -set with an -action, because an -torsor will then be a finite étale cover (and indeed a Galois cover, because the -action furnishes the necessary set of automorphisms).

Let be an -torsor, and let be a continuous representation of on a finite-dimensional -vector space : by this, we assume that takes its image in matrices involving elements in a finite extension of ; of course this is automatic when is finite. Then we can obtain a smooth -sheaf . One way to obtain this is to do the same “gluing” procedure of trivial torsors given by a cocycle, but to do it with trivial -sheaves (the cocycle is fed into ). Thus:

Proposition 32A representation (satisfying the above hypotheses) leads to a covariant functor from -torsors to smooth -sheaves.

From the definition via cocycles, the following is also clear:

Proposition 33Given representations of , we have for any -torsor canonical isomorphisms:

Note further that this feature commutes with pull-back. That is, if is an -torsor on and is a morphism, we can define place on the pull-back a natural structure of -torsor. Then, for any -representation ,

It follows that stalks commute with this functor .

Finally,

Lemma 34Let be torsors over the groups . Suppose given a map . If is a morphism of torsors (equivariant with respect to these groups), and is a representation of , then there is a map

This is an isomorphism.

To define the Artin-Schreier sheaf (which is a smooth -sheaf on the affine line ), we start with a simple example of a torsor. Let be a smooth, geometrically connected *commutative* algebraic group. Let . There is a *Frobenius endomorphism* over , which is given on the associated algebras by raising to the power .

The base-change to , (the so-called *relative Frobenius*) is then given in affine coordinates is given by (for ). This is a morphism of algebraic groups, because the group law was defined over . We can consider the morphism , which sends . Call this the *Lang isogeny* .

Theorem 35 (Lang)The Lang isogeny is a finite, surjective, étale morphism of algebraic groups.

Surjectivity is actually true even without commutativity, although then the Lang morphism is not a morphism of algebraic groups.

*Proof:* Indeed, is étale (since the Frobenius induces the zero map on tangent spaces). The image is an open subgroup, which must be the entire group. Thus it is surjective, as well. We need to see, at last, that is *finite*.

But any surjection of smooth algebraic groups over an algebraically closed field with finite kernel is proper: in fact, it is faithfully flat (by generic flatness and a translation argument), so a quotient map. Since for any , we have , it follows that is closed for any closed (we have used ‘s being a quotient map). Thus is proper, and since it is quasi-finite, Chevalley’s theorem implies that is finite. Note that is *geometrically connected*: that is, the base-change to remains a connected étale cover of (which is itself isomorphic to !). It follows that the action of the geometric fundamental group (for some geometric point) on the étale cover is nontrivial, or the pull-back to would be split.

One way to interpret this result is that the non-abelian Galois cohomology of an affine algebraic group over a finite field is trivial; consequently, given an exact sequence of algebraic groups over , the sequence of -points is also exact.

Now is a finite group, which clearly acts on by multiplication.

Proposition 36The Lang isogeny makes into a torsor over the finite group .

*Proof:* We only need to check that the map is locally trivial, in the étale topology. But this follows because the geometric fibers of (which are each isomorphic to the kernel) are -torsors. In fact, we find that for any surjection of algebraic groups with finite kernel, becomes a torsor (over ) for the kernel.

In general, note that if is a locally constant constructible sheaf of sets on the étale site of some scheme (corresponding to a finite étale cover) with action of a finite group , then is an -torsor if and only if the geometric stalks are -torsors. This follows (and we sketch the argument) because if is an -torsor, we can find elements in some étale neighborhood of which are permuted amongst themselves by and which fill all the sections, locally: this implies trivialty.

Let be a -rational point. We know that the fundamental group acts on the torsor , inducing isomorphisms of the étale cover. Let us determine the action of the *arithmetic* Frobenius , which maps to an element of , on this torsor: it must be translation by some element of , as we have already remarked. We have a cartesian diagram

We need to analyze the action of on . This is the Galois action, and corresponds to the morphism on rings : in fact, the Galois action is of this form (raising to a power) for any scheme finite étale over . It follows that on the geometric fiber, this corresponds in coordinates to . However, since we are in the fiber over , this corresponds to multiplication by on that fiber. It follows by naturality of the fundamental group that the induced automorphism of the cover is simply translation by .

We have proved:

Proposition 37Let be a smooth linear algebraic group over . If is a -rational point, then the arithmetic Frobenius at induces (through -action) the automorphism of given by translation by .

Definition 38Consider as a group scheme over and the Lang isogeny (which is just ), which becomes a torsor over . Given a character , we define theArtin-Schreier sheafby applying to the -torsor .

The Artin-Schreier sheaf is thus a smooth -sheaf of rank one on . We note that , because of what we have discussed above.

We now wish to study the local action of the Galois group.

Proposition 39Let . Then the action of the geometric Frobenius on is given by multiplication by .

*Proof:* In fact, we recall that the operation of obtaining a -sheaf from a torsor commutes with pull-back. As a result, it commutes with taking stalks, and the Galois equivariance is preserved. But the ordinary Frobenius acts on the Lang torsor by translation by . This corresponds after forming -sheaves to multiplying by . Since the geometric Frobenius is the inverse, we are done.

Next, we wish to discuss how the Artin-Schreier sheaf behaves with respect to a change of base field.

Proposition 40Let be a finite extension of , and let be a character. Then the pull-back of via is the -sheaf on .

Note that the sheaf is obtained from a *different* torsor (in fact, a -torsor) over , not the old torsor over .

*Proof:* The pull-back of is the torsor given in geometric affine coordinates as , as before. This is still a Galois cover, with covering group , and this with the character gives the pull-back of .

Suppose .

There is a Lang map given by . This can be expressed as the composite

The map , is a morphism of torsors over and respectively, equivariant with respect to the trace map . Consequently, “tensoring” the first one over with respect to is the same as tensoring the second (necessarily over the pull-back by ).

Motivated by this result, we shall regard a character as a *family* of characters on each finite extension , by means of the trace. So a character will be tacitly used to give characters for each , which will not of course agree; however, the usage should not cause confusion. The different line bundles we get are all compatible.

**4.2. The Fourier-Deligne transform**

We shall use the category , which is the bounded derived category of -sheaves on the affine line .

Fix a nontrivial character .

Definition 41Consider the two projections , the multiplication map (in geometric coordinates, ), We define the functor as follows. Given , we set

The definition is formally analogous to the familiar Fourier transform on , but let us motivate it further with a discussion of the “function-sheaf correspondence.” Given a Weil sheaf on , we define a function via:

This is defined on the -rational points of the affine line, that is, the elements of . We can extend it to a complex of sheaves by taking the alternating trace of the Frobenius on the cohomology, and in this way we can associate a function to any in the derived category.

We find:

- If is a morphism of -schemes, then .
- If is a compactifiable morphism, then , where the operator is defined on functions by .

*Proof:* The first result is obvious. The second is a restatement of the Grothendieck trace formula(!).

Let now, so the -rational points are just . Let . The claim is that is almost the discrete Fourier transform of .

To see this, will use the above result (that is, essentially the trace formula), and the following computation of the stalks of the Fourier transform:

With this in mind, we want to prove the promised claim about the function . Namely, given , then we find by that

This is because we must take a sum over the -rational points in the fiber, and we know how the Frobenius acts on the part. The minus sign comes from the shift involved in defining the functor .

**4.3. The inversion formula**

The Fourier transform of functions on has the property that a similarly defined operator is its inverse. We want to show the same thing for the Fourier-Deligne transform. Namely:

Theorem 43 (Inversion)There is a natural isomorphism .

## Leave a Reply