The topic of this post is a curious functor, discovered by Deligne, on the category of sheaves over the affine line, which is a “sheafification” of the Fourier transform for functions.
Recall that the classical Fourier transform is an almost-involution of the Hilbert space . We shall now discuss the Fourier-Deligne transform, which is an almost-involution of the bounded derived category of
-adic sheaves,
. The Fourier transform is defined by multiplying a function with a character (which depends on a parameter) and integrating. Analogously, the Fourier-Deligne transform will twist an element of
by a character depending on a parameter, and then take the cohomology.
More precisely, consider the following: let be a LCA group,
its dual. We have a canonical character on
given by evaluation. To construct the Fourier transform
, we start with a function
. We pull back to
, multiply by the evaluation character
defined above, and integrate along fibers to give a function on
.
Everything we’ve done here has a sheaf-theoretic analog, however: pulling back a function corresponds to the functorial pull-back of sheaves, multiplication by a character corresponds to tensoring with a suitable line bundle, and integration along fibers corresponds to the lower shriek push-forward. Much of the classical formalism goes over to the sheaf-theoretic case. One can prove an “inversion formula” analogous to the Fourier inversion formula (with a Tate twist).
Why should we care? Well, Laumon interpreted the Fourier transform as a suitable “deformation” of the cohomology of a suitable sheaf on the affine line, and used it to give a simplified proof of the main results of Weil II, without using scary things like vanishing cycles and Picard-Lefschetz theory. The Fourier transform also behaves very well with respect to perverse sheaves: it is an auto-equivalence of the category of perverse sheaves, because of the careful way in which it is calibrated. Its careful use can be used to simplify some of the arguments in BBD that also rely on other scary things.
4.1. The Artin-Schreier sheaf
The “twisting” mechanism we shall need for this will be the Artin-Schreier sheaf.
Let be any scheme, and let
be a group.
Definition 31 An
-torsor is a sheaf
of sets on the étale site of
, together with an action
which is locally trivial: there is an étale cover of
on which
becomes
-isomorphic to the trivial torsor
(where
is considered as a constant sheaf).
As usual, it follows that torsors are classified by (in the étale topology!), which is defined by cocycles and coboundaries in the non-abelian case (by the spectral sequence, this is also the derived functor
for an abelian sheaf). When
is finite, an
-torsor corresponds to a finite, continuous
-set with an
-action, because an
-torsor will then be a finite étale cover (and indeed a Galois cover, because the
-action furnishes the necessary set of automorphisms).
Let be an
-torsor, and let
be a continuous representation of
on a finite-dimensional
-vector space
: by this, we assume that
takes its image in matrices involving elements in a finite extension of
; of course this is automatic when
is finite. Then we can obtain a smooth
-sheaf
. One way to obtain this is to do the same “gluing” procedure of trivial torsors given by a cocycle, but to do it with trivial
-sheaves (the cocycle is fed into
). Thus:
Proposition 32 A representation
(satisfying the above hypotheses) leads to a covariant functor from
-torsors to smooth
-sheaves.
From the definition via cocycles, the following is also clear:
Proposition 33 Given representations
of
, we have for any
-torsor
canonical isomorphisms:
Note further that this feature commutes with pull-back. That is, if is an
-torsor on
and
is a morphism, we can define place on the pull-back
a natural structure of
-torsor. Then, for any
-representation
,
It follows that stalks commute with this functor .
Finally,
Lemma 34 Let
be torsors over the groups
. Suppose given a map
. If
is a morphism of torsors (equivariant with respect to these groups), and
is a representation of
, then there is a map
This is an isomorphism.
To define the Artin-Schreier sheaf (which is a smooth -sheaf on the affine line
), we start with a simple example of a torsor. Let
be a smooth, geometrically connected commutative algebraic group. Let
. There is a Frobenius endomorphism
over
, which is given on the associated algebras by raising to the power
.
The base-change to ,
(the so-called relative Frobenius) is then given in affine coordinates is given by
(for
). This is a morphism of algebraic groups, because the group law was defined over
. We can consider the morphism
, which sends
. Call this the Lang isogeny
.
Theorem 35 (Lang) The Lang isogeny
is a finite, surjective, étale morphism of algebraic groups.
Surjectivity is actually true even without commutativity, although then the Lang morphism is not a morphism of algebraic groups.
Proof: Indeed, is étale (since the Frobenius induces the zero map on tangent spaces). The image is an open subgroup, which must be the entire group. Thus it is surjective, as well. We need to see, at last, that
is finite.
But any surjection of smooth algebraic groups over an algebraically closed field with finite kernel is proper: in fact, it is faithfully flat (by generic flatness and a translation argument), so a quotient map. Since for any
, we have
, it follows that
is closed for any closed
(we have used
‘s being a quotient map). Thus
is proper, and since it is quasi-finite, Chevalley’s theorem implies that
is finite. Note that
is geometrically connected: that is, the base-change to
remains a connected étale cover of
(which is itself isomorphic to
!). It follows that the action of the geometric fundamental group
(for
some geometric point) on the étale cover is nontrivial, or the pull-back to
would be split.
One way to interpret this result is that the non-abelian Galois cohomology of an affine algebraic group over a finite field is trivial; consequently, given an exact sequence of algebraic groups
over
, the sequence of
-points is also exact.
Now is a finite group, which clearly acts on
by multiplication.
Proposition 36 The Lang isogeny
makes
into a torsor over the finite group
.
Proof: We only need to check that the map is locally trivial, in the étale topology. But this follows because the geometric fibers of (which are each isomorphic to the kernel) are
-torsors. In fact, we find that for any surjection of algebraic groups
with finite kernel,
becomes a torsor (over
) for the kernel.
In general, note that if is a locally constant constructible sheaf of sets on the étale site of some scheme
(corresponding to a finite étale cover) with action of a finite group
, then
is an
-torsor if and only if the geometric stalks
are
-torsors. This follows (and we sketch the argument) because if
is an
-torsor, we can find elements
in some étale neighborhood of
which are permuted amongst themselves by
and which fill all the sections, locally: this implies trivialty.
Let be a
-rational point. We know that the fundamental group
acts on the torsor
, inducing isomorphisms of the étale cover. Let us determine the action of the arithmetic Frobenius
, which maps to an element of
, on this torsor: it must be translation by some element of
, as we have already remarked. We have a cartesian diagram
We need to analyze the action of on
. This is the Galois action, and corresponds to the morphism on rings
: in fact, the Galois action is of this form (raising to a power) for any scheme finite étale over
. It follows that on the geometric fiber, this corresponds in coordinates to
. However, since we are in the fiber over
, this corresponds to multiplication by
on that fiber. It follows by naturality of the fundamental group that the induced automorphism of the cover
is simply translation by
.
We have proved:
Proposition 37 Let
be a smooth linear algebraic group over
. If
is a
-rational point, then the arithmetic Frobenius
at
induces (through
-action) the automorphism of
given by translation by
.
Definition 38 Consider
as a group scheme over
and the Lang isogeny
(which is just
), which becomes a torsor over
. Given a character
, we define the Artin-Schreier sheaf
by applying
to the
-torsor
.
The Artin-Schreier sheaf is thus a smooth -sheaf of rank one on
. We note that
, because of what we have discussed above.
We now wish to study the local action of the Galois group.
Proposition 39 Let
. Then the action of the geometric Frobenius on
is given by multiplication by
.
Proof: In fact, we recall that the operation of obtaining a -sheaf from a torsor commutes with pull-back. As a result, it commutes with taking stalks, and the Galois equivariance is preserved. But the ordinary Frobenius acts on the Lang torsor
by translation by
. This corresponds after forming
-sheaves to multiplying by
. Since the geometric Frobenius is the inverse, we are done.
Next, we wish to discuss how the Artin-Schreier sheaf behaves with respect to a change of base field.
Proposition 40 Let
be a finite extension of
, and let
be a character. Then the pull-back of
via
is the
-sheaf
on
.
Note that the sheaf is obtained from a different torsor (in fact, a
-torsor) over
, not the old torsor over
.
Proof: The pull-back of is the torsor
given in geometric affine coordinates as
, as before. This is still a Galois cover, with covering group
, and this with the character
gives the pull-back of
.
Suppose .
There is a Lang map given by
. This can be expressed as the composite
The map ,
is a morphism of torsors over
and
respectively, equivariant with respect to the trace map
. Consequently, “tensoring” the first one over
with respect to
is the same as tensoring the second (necessarily over the pull-back by
).
Motivated by this result, we shall regard a character as a family of characters on each finite extension
, by means of the trace. So a character
will be tacitly used to give characters
for each
, which will not of course agree; however, the usage should not cause confusion. The different line bundles we get are all compatible.
4.2. The Fourier-Deligne transform
We shall use the category , which is the bounded derived category of
-sheaves on the affine line
.
Fix a nontrivial character .
Definition 41 Consider the two projections
, the multiplication map
(in geometric coordinates,
), We define the functor
as follows. Given
, we set
The definition is formally analogous to the familiar Fourier transform on , but let us motivate it further with a discussion of the “function-sheaf correspondence.” Given a Weil sheaf
on
, we define a function
via:
This is defined on the -rational points of the affine line, that is, the elements of
. We can extend it to a complex of sheaves by taking the alternating trace of the Frobenius on the cohomology, and in this way we can associate a function
to any
in the derived category.
We find:
- If
is a morphism of
-schemes, then
.
- If
is a compactifiable morphism, then
, where the operator
is defined on functions by
.
Proof: The first result is obvious. The second is a restatement of the Grothendieck trace formula(!).
Let now, so the
-rational points are just
. Let
. The claim is that
is almost the discrete Fourier transform of
.
To see this, will use the above result (that is, essentially the trace formula), and the following computation of the stalks of the Fourier transform:
With this in mind, we want to prove the promised claim about the function . Namely, given
, then we find by that
This is because we must take a sum over the -rational points in the fiber, and we know how the Frobenius acts on the
part. The minus sign comes from the shift involved in defining the functor
.
4.3. The inversion formula
The Fourier transform of functions on has the property that a similarly defined operator is its inverse. We want to show the same thing for the Fourier-Deligne transform. Namely:
Theorem 43 (Inversion) There is a natural isomorphism
.
Leave a Reply