I recently started writing up some material on finite presentation for the CRing project. There seems to be a folk “finitely presented” approach in mathematics: to prove something over a big, scary uncountable field like , one argues that the problem descends to some much smaller subobject, for instance a finitely generated subring of the complex numbers. It might be possible to prove using elementary methods the analog for such smaller subobjects, from which one can deduce the result for the big object.
One way to make these ideas precise is the characteristic p principle of Abraham Robinson, which I blogged about in the past when describing the model-theoretic approach to the Ax-Grothendieck theorem. Today, I want to describe a slightly different (choice-free!) argument in this vein that I learned from an article of Serre.
Theorem 1 Let
be a polynomial map with
. Then
has a fixed point.
We can phrase this alternatively as follows. Let be a
-involution. Then the map on the
‘s has a fixed point (which is a closed point).
In fact, this result can be proved using directly Robinson’s principle (exercise!). The present argument, though, has more of an algebro-geometric feel to it, and it now appears in the CRing project — you can find it in the chapter currently marked “various.“
Let us now prove this result, following Serre. It is clear that the presentation of involves only a finite amount of data, so we can construct a finitely generated
-algebra
and an involution
such that is obtained from
by base-changing
. We can assume that
as well.
To see this explicitly, we simply need only add to the coefficients of the polynomials
, and
, and consider the
-algebra they generate.
Suppose now the system of equations has no solution in
. This is equivalent to stating that a finite system of polynomials (namely, the
) generate the unit ideal in
, so that there are polynomials
such that
.
Let us now enlarge so that the coefficients of the
lie in
. Since the coefficients of the
are already in
, we find that the polynomials
will generate the unit ideal in
. If
is a homomorphic image of
, then this will be true in
.
Choose a maximal ideal . Then
is a finite field, and
becomes an involution
If we let be the algebraic closure of
, then we have an involution
But the induced map by on
has no fixed points. This follows because the
generate the unit ideal in
(because we can consider the images of the
in
). Moreover,
as
, so
is invertible in
as well.
So from the initial fixed-point-free involution (or
), we have induced a polynomial map
with no fixed points. We need only now prove:
Lemma 2 If
is the algebraic closure of
for
, then any involution
which is a polynomial map has a fixed point.
Proof: This is very simple. There is a finite field in which the coefficients of
all lie; thus
induces a map
which is necessarily an involution. But an involution on a finite set of odd cardinality necessarily has a fixed point (or all orbits would be even).
Leave a Reply