It’s been a couple of weeks since I’ve posted anything here. I’ve been trying to understand homotopy theory, especially the modern kind with model categories. The second semester of my algebraic topology course is slated to cover that, to which I am looking forward. Right now, we are learning about spectral sequences. I have also been trying to understand Tate’s thesis, unsuccessfully.
Today, I’d like to prove a fairly nontrivial result, due to Freyd, following MacLane; this is a post that, actually, I take from a recent change I made to the CRing project. This gives a sufficient condition for the existence of initial objects.
Let be a category. Then we recall that
if for each
, there is a unique
. Let us consider the weaker condition that for each
, there exists a map
.
Definition 1 Suppose
has equalizers. If
is such that
for each
, then
is called weakly initial.
We now want to get an initial object from a weakly initial object. To do this, note first that if is weakly initial and
is any object with a morphism
, then
is weakly initial too. So we are going to take our initial object to be a very small subobject of
. It is going to be so small as to guarantee the uniqueness condition of an initial object. To make it small, we equalize all endomorphisms.
Proposition 2 If
is a weakly initial object in
, then the equalizer of all endomorphisms
is initial for
.
Proof: Let be this equalizer; it is endowed with a morphism
. Then let us recall what this means. For any two endomorphisms
, the two pull-backs
are equal. Moreover, if
is a morphism that has this property, then
factors uniquely through
.
Now is a morphism, so by the remarks above,
is weakly initial: to each
, there exists a morphism
. However, we need to show that it is unique.
So suppose given two maps . We are going to show that they are equal. If not, consider their equalizer
. Then we have a morphism
such that the postcompositions with
are equal. But by weak initialness, there is a map
; thus we get a composite
We claim that this is a retraction of the embedding . This will prove the result. Indeed, we will have constructed a retraction
, and since it factors through
, the two maps
are equal. Thus, composing each of these with the inclusion shows that
were equal in the first place.
Thus we are reduced to proving:
Lemma 3 Let
be an object of a category
. Let
be the equalizer of all endomorphisms of
. Then any morphism
is a retraction of the inclusion
.
Proof: Consider the canonical inclusion . We are given some map
; we must show that
. Indeed, consider the composition
Now equalizes endomorphisms of
; in particular, this composition is the same as
that is, it equals . So the map
has the property that
as maps
. But
being a monomorphism, it follows that
.
Theorem 4 (Freyd) Let
be a complete category. Then
has an initial object if and only if the following solution set condition holds: there is a set
of objects in
such that any
can be mapped into by one of these.
The idea is that the family is somehow weakly universal together. Proof: If
has an initial object, we may just consider that as the family
: we can hom out (uniquely!) from a universal object into anything, or in other words a universal object is weakly universal.
Suppose we have a “weakly universal family” . Then the product
is weakly universal. Indeed, if
, choose some
and a morphism
by the hypothesis. Then this map composed with the projection from the product gives a map
.
February 6, 2011 at 8:49 pm
[…] blogged about it here, and added it to the CRing project here. Basically, the point is that complete categories are prone […]
June 16, 2012 at 1:16 am
For what it’s worth, I think you mean “retract” where you say “section”.
June 16, 2012 at 6:01 am
Fixed, thanks.