This one will be a quick post. In effect, we continue with last time, where we defined the relative homotopy groups, and now describe a practical means of determining when something in one of these relative groups is zero or not. This will become useful in the future.
The compression criterion
We have defined the group above, but we still need a good criterion for knowing when something in
, represented by
, is zero. Or, when
, when it represents the base element. The obvious reason is that if there is a homotopy
starting with
and ending at the constant map. Here is another that will be useful.
Theorem 1 (Compression criterion) A map
represents zero in
if and only if
is homotopic relative
to a map
.
Proof: This is one of those things which is not really all that hard to prove, but for which pictures help significantly. So I will try to draw pictures.
Suppose first that is homotopic relative to
to something taking values in
. Then, without loss of generality, we can assume that
itself; under this assumption, we must show
represents zero in the relative homotopy group. But
is contractible to its basepoint. So
is homotopic to a constant map (relative to the basepoint). But throughout the contraction, the modified
‘s still stay in
. So
represents the same as the map sending
to a basepoint, i.e.
is trivial.
Now suppose is trivial. Then there is a homotopy as in the figure, a map from the cylinder into
which is in
on
.
This is a homotopy between and the constant map which at each stage sends the boundary
into
. Now we can deform
in this homotopy by shifting the top disk down but keeping its “arms” at the boundary.
The end result is that ‘s boundary changed but the final deformation has values in
only. This proves the converse.
In fact, the compression criterion alone can be used to prove the exactness of the homotopy group sequence.
-connected pairs
With the compression criterion in mind, we now formulate the notion of an -connected pair.
Definition 2 The pair
(with basepoint
) is said to be
-connected if
We can draw an exact sequence of homotopy groups at each stage:
As a result, it follows that if is
-connected, then
is an isomorphism for and surjective for
. Conversely, if this condition holds, then the pair is
-connected.
The compression criterion now gives us a useful reformulation:
Proposition 3 The pair
is
-connected if every
is homotopic relative the boundary to a map
.
We will give examples of this in the future.
Leave a Reply