Last time, we were discussing the category whose objects are pointed topological spaces and whose morphisms are pointed homotopy classes of basepoint-preserving maps. It turns out that the homotopy groups are functors from this category
to the category of groups.
The homotopy group functors are, however, representable. They are representable by
, where
is a base-point; this is equivalently
for
the
-cube and
the boundary. The fact that these are functors to the category of groups is equivalent to saying that
is a cogroup object in
.
But why should be a cogroup object? To answer this question, let us consider a pair of adjoint functors on
.
1. The loop space
Let . The loop space
(which should really be denoted
) is the set of all maps
In other words, the set of all loops at , or all maps
which start at end at the basepoint
. With the compact-open topology, this is a nice topological space.
This is starting to sound like the fundamental group , but that’s actually the set of path components in
.
is a pointed space. Indeed, the constant path at
is the basepoint. Moreover,
is functorial. Given a map
of pointed topological spaces, we get a continuous map
by composing paths into with
. Since the constant path at
is sent into the constant path at the basepoint of
,
is a morphism of pointed spaces.
But we still need to make into a functor on the homotopy category
. This results from the following easy observation. Given a basepoint-preserving homotopy of maps
, we get a homotopy of maps
. So
is a functor on the homotopy category.
To summarize:
Proposition 1
is a functor
.
Nonetheless, is more than just a pointed space. It is also, in a very natural manner, a group object in
. In particular, this means that there is a “group operation”
and a “unit”
and an “inverse”
such that the associativity, inverse, unital axioms hold up to homotopy. This is the dual of the idea of an H cogroup discussed earlier.
The group structure is defined as follows. Given loops at the basepoint, their “multiplication” is defined by concatenation
: first go through
(at twice the speed), then go through
. The inverse sends
to its reversal. The unit element is the constant loop (i.e., the basepoint). It is easy to see that there are homotopies
proving H associativity, and so on. These calculations, which are analogous to those for the fundamental group, show that is a group object in
.
2. The suspension
Now we describe the adjoint. Suppose are topological spaces, where
is locally compact and Hausdorff. Then the obvious map of sets
is a homeomorphism if is treated as a topological space for any spaces
by giving it the compact-open topology.
If we treat the outside “‘s” as simply sets, one consequence of this is that the two functors
and
are adjoint functors on the category of topological spaces if
is locally compact and Hausdorff.
Now is a kind of
but with some restrictions. So the previous paragraph suggests that it might have an adjoint, which would look like a product. But
is a restricted form of
: it is a subfunctor. Thus the adjoint should be a quotient space, perhaps. So it seems.
We now describe this functor. Start by recalling a notion of standard topology.
Definition 2 Let
be a topological space. Then the suspension of
is the quotient of the product of
with
and
each identified to a point. The suspension is denoted
.
So intuitively, one should think of the suspension as pinching off the top edge and the bottom edge of the cylinder to a point (well, two different points).
Since we are in the category of pointed spaces, we need a pointed version of this. The suspension by itself does not have a nice pointed structure to it.
Definition 3 Let
be a pointed topological space. Then the reduced suspension
is the quotient of the ordinary suspension
with
identified to a point. The basepoint of
is the equivalence class
.
I claim now that can be made into a functor on
. First, suppose
is a continuous map of topological spaces. We get a map
This map sends the top edge into itself and the bottom into itself. It is clear now that factors through the equivalence relation defining the reduced suspension and becomes a map
Similarly, given a homotopy of maps , we get a homotopy of maps
that keep the second coordinate fixed. It is thus clear that we get a homotopy of maps
. These remarks have proved:
Proposition 4
becomes a functor
.
The main result we have been waiting for today is that:
Proposition 5
and
are adjoint functors on
. In particular, we have a natural isomorphism
In a sense, this is almost tautological once one thinks through it carefully. Suppose given . Then for each
, as
ranges through
, we have the path
traced out in
. So each
gets sent to a path
in
. This goes to a path in
. Since
is a base-point preserving map, we see that
is a loop at the basepoint
. Moreover, the basepoint of
, that is
, is sent to the constant loop at
, because
is identified to one point in
. In total, we get a base-point preserving map
One works in the same way to get a map out of
. Then, one can check that basepoint-preserving homotopies of continuous functions
induce basepoint-preserving homotopies of continuous
, and vice versa. This is how the proof works.
Next time, I’ll discuss the cogroup structure on the suspension, and finally explain how this connects to the homotopy groups. I’ll also discuss the Eckmann-Hilton argument for showing that the higher homotopy groups are abelian, which comes right from here.
October 3, 2010 at 10:44 pm
[…] groups III October 3, 2010 tags: Eckmann-Hilton argument, homotopy groups by Akhil Mathew Last time, we defined two functors and on the category of pointed topological spaces and (base-point […]