Last time, we were discussing the category whose objects are pointed topological spaces and whose morphisms are pointed homotopy classes of basepoint-preserving maps. It turns out that the **homotopy groups** are functors from this category to the category of groups.

The homotopy group functors are, however, representable. They are representable by , where is a base-point; this is equivalently for the -cube and the boundary. The fact that these are functors to the category of groups is equivalent to saying that is a cogroup object in .

But why should be a cogroup object? To answer this question, let us consider a pair of adjoint functors on .

**1. The loop space **

Let . The **loop space** (which should really be denoted ) is the set of all maps

In other words, the set of all loops at , or all maps which start at end at the basepoint . With the compact-open topology, this is a nice topological space.

This is starting to sound like the fundamental group , but that’s actually the set of path components in .

is a pointed space. Indeed, the constant path at is the basepoint. Moreover, is functorial. Given a map of pointed topological spaces, we get a continuous map

by composing paths into with . Since the constant path at is sent into the constant path at the basepoint of , is a morphism of pointed spaces.

But we still need to make into a functor on the *homotopy* category . This results from the following easy observation. Given a basepoint-preserving homotopy of maps , we get a homotopy of maps . So is a functor on the homotopy category.

To summarize:

Proposition 1is a functor .

Nonetheless, is more than just a pointed space. It is also, in a very natural manner, a group object in . In particular, this means that there is a “group operation”

and a “unit”

and an “inverse”

such that the associativity, inverse, unital axioms hold *up to homotopy*. This is the dual of the idea of an H cogroup discussed earlier.

The group structure is defined as follows. Given loops at the basepoint, their “multiplication” is defined by concatenation : first go through (at twice the speed), then go through . The inverse sends to its reversal. The unit element is the constant loop (i.e., the basepoint). It is easy to see that there are homotopies

proving H associativity, and so on. These calculations, which are analogous to those for the fundamental group, show that is a group object in .

**2. The suspension **

Now we describe the adjoint. Suppose are topological spaces, where is locally compact and Hausdorff. Then the obvious map of sets

is a homeomorphism if is treated as a topological space for any spaces by giving it the compact-open topology.

If we treat the outside “‘s” as simply sets, one consequence of this is that the two functors and are adjoint functors on the category of topological spaces if is locally compact and Hausdorff.

Now is a kind of but with some restrictions. So the previous paragraph suggests that it might have an adjoint, which would look like a product. But is a restricted form of : it is a subfunctor. Thus the adjoint should be a quotient space, perhaps. So it seems.

We now describe this functor. Start by recalling a notion of standard topology.

Definition 2Let be a topological space. Then thesuspensionof is the quotient of the product of with and each identified to a point. The suspension is denoted .

So intuitively, one should think of the suspension as pinching off the top edge and the bottom edge of the cylinder to a point (well, two different points).

Since we are in the category of pointed spaces, we need a pointed version of this. The suspension by itself does not have a nice pointed structure to it.

Definition 3Let be a pointed topological space. Then thereduced suspensionis the quotient of the ordinary suspension with identified to a point. The basepoint of is the equivalence class .

I claim now that can be made into a functor on . First, suppose is a continuous map of topological spaces. We get a map

This map sends the top edge into itself and the bottom into itself. It is clear now that factors through the equivalence relation defining the reduced suspension and becomes a map

Similarly, given a homotopy of maps , we get a homotopy of maps that keep the second coordinate fixed. It is thus clear that we get a homotopy of maps . These remarks have proved:

Proposition 4becomes a functor .

The main result we have been waiting for today is that:

Proposition 5and are adjoint functors on . In particular, we have a natural isomorphism

In a sense, this is almost tautological once one thinks through it carefully. Suppose given . Then for each , as ranges through , we have the path traced out in . So each gets sent to a path in . This goes to a path in . Since is a base-point preserving map, we see that is a loop at the basepoint . Moreover, the basepoint of , that is , is sent to the constant loop at , because is identified to one point in . In total, we get a base-point preserving map

One works in the same way to get a map out of . Then, one can check that basepoint-preserving homotopies of continuous functions induce basepoint-preserving homotopies of continuous , and vice versa. This is how the proof works.

Next time, I’ll discuss the cogroup structure on the suspension, and finally explain how this connects to the homotopy groups. I’ll also discuss the Eckmann-Hilton argument for showing that the higher homotopy groups are abelian, which comes right from here.

October 3, 2010 at 10:44 pm

[…] groups III October 3, 2010 tags: Eckmann-Hilton argument, homotopy groups by Akhil Mathew Last time, we defined two functors and on the category of pointed topological spaces and (base-point […]