I’ve been reading a lot of algebraic topology as of late, but I still don’t think I understand most of it properly. I will try to blog about some of the ideas as a means to understand the ideas better.
The homotopy groups are essentially homotopy classes of maps from the sphere into a space . For instance, the first homotopy group
(or fundamental group) is the group of homotopy classes of loops at a fixed base-point. But why should they be a group? There is a categorical reason for this, and while it’s not immensely deep, I’d like to explain it.
1. Definition
Fix a topological space with a basepoint
. Let
. We consider the set
of homotopy classes of maps
from the unit
-cube into
. This, however, is not a very interesting set, because
is contractible; there is thus only one element. Instead, we consider the set
of homotopy classes of maps
that send the boundary
into
. When I say “homotopy classes,” I mean that homotopies are required to send the boundary
into
.
To make this explicit:
Definition 1 The
-th homotopy group
of a space-with-basepoint
is the set of all maps
sending
to
under the equivalence relation that
are considered equivalent if there exists a homotopy
between
relative to
. This is functorial in the obvious way: a map
(i.e. a map sending
) induces a map on the homotopy groups.
So this is a set. But we have not explained why this is supposed to be a homotopy group. The group structure can be visualized intuitively in the case : given
that each send the boundaries into
, we can catenate
to get a path
This multiplication is not associative on the loops, but it is associative up to homotopy. And that’s all you need to define the group law on the set of homotopy classes when . A modification of this works in higher dimensions.
The essential point here was that paths can be pieced together back to back. This is an essential point of the space . For instance, it would be less obvious how to make the set of homotopy classes from a pointed torus into a space a group in any natural way.
The answer to the earlier question is that (and the higher
) is “almost” a co-group object in the category of pointed topological spaces. I say almost, because the comultiplication is (co)associative only up to homotopy. In particular, the fact that all these homotopy groups are groups is a special case of Yoneda categorical nonsense.
2. The homotopy category
Since we work with maps up to homotopy to define the groups, it makes sense to consider a corresponding category. In this category, the functors are representable by the objects
. Thus the fact that they can be viewed naturally as groups is a co-group statement about the
.
Definition 2 We consider the category
, called the homotopy category of pointed topological spaces, defined as follows. The objects of
are pointed spaces
. So
is a topological space and
.
The morphisms between
are the set of maps
with
with the equivalence relation that
are equivalent if there is a homotopy
between
such that
.
The last condition says that is a homotopy relative to
. Strictly speaking, one should check something first. Namely, that if
are equivalent and
is a pointed map, then
are equivalent; this is necessary to see that the category is well-defined. But this is straightforward.
So what is the set in this language? Recall that a map
sending
is the same thing as a map out of the quotient space
sending the “basepoint”
. So if we regard
as a pointed space, then
is just
It is clear that is a covariant functor from
. It is also clear that it is co-representable by the object
. But in fact, as asserted above, each
is a group.
Proposition 3 Let
be any category with finite coproducts and a final object. Suppose
and the sets
are endowed with a group structure which is natural. In other words,
can be viewed as a functor to the category of groups. Then
is a co-group object.
Let us recall what it means for to be a co-group object. In other words, there is a comultiplication map
and a counit map
for the final object. These are required to satisfy arrow-theoretic reversals of the usual relations imposed on a group. For instance, the map
composing the counit and the comultiplication, as to be the identity.
Now has a final object: it’s just
, a one-point space. Moreover, it has finite coproducts. The coproduct of
is the space
. This is not completely trivial, actually. On the one hand, it is clear that to give a pointed map of topological spaces
is the same as giving a pair of pointed maps . We need to check, however, that a pair of homotopies
induce
The reason is that piece together to give a map of the quotient space of
and
with
for each
. By the following theorem in general topology, this quotient space is the same as the product
. So the homotopies indeed do patch appropriately.
Lemma 4 Let
be a quotient map. If
is a locally compact Hausdorff space, then
is a quotient map.
We won’t prove this nontrivial but not terribly difficult result from general topology.
So, let’s put this together. has finite coproducts and a final object. So when a (co)representable functor
has its image in the category of groups, then
is a cogroup in
. Unravelling the definitions shows that this means that there are continuous maps of pointed topological spaces
and
such that coassociativity holds up to pointed homotopy.
Definition 5 A H cogroup is a pointed topological space
with comultiplication and counit maps such that the cogroup diagrams commute up to pointed homotopy. In other words, a cogroup object in
.
So we see that necessarily is an
cogroup, which is what lets one catenate a pair of maps
. This cogroup structure in the case
, for instance, sends
to
in the first copy of
if
and to
in the second copy of
for
. Since the boundaries of the two are identified, this is a well-defined comulitiplication map, and one can check that it is homotopy co-associatve. The counit collapses everything to a point.
And that is one basic reason for why the homotopy groups should be groups.
This still doesn’t explain why we would expect to be an
cogroup. Next, I will discuss a pair of adjoint functors on
that helps answer this related question, as well as the further question of why the higher homotopy groups are commutative.
September 26, 2010 at 11:38 pm
[…] 2010 tags: adjoint functors, homotopy theory, loop space, reduced suspension by Akhil Mathew Last time, we were discussing the category whose objects are pointed topological spaces and whose morphisms […]