[This post, a continuation of the series on representation theory in complex rank, discusses the irreducibles in Deligne’s category for
and what one can do with them.]
OK, so we now know that Deligne’s categories are semisimple when
. But, this is a paradox. Deligne’s categories, a family of categories constructed to interpolate the semisimple categories of representations of
are semisimple precisely at the complement of the nonnegative integers!
The problem is, when ,
is not equivalent to the ordinary category
. The problem is that not all relations correspond to actual morphisms. Deligne in fact shows that the ordinary category can be obtained as a quotient of his
(via the tensor ideal of “neglligible morphisms”) but this isn’t really important for the story I’m telling.
1. Motivation and remarks
Today, I want to talk about what the simple objects in , look like. We know what the simple
-representations are; they are the Specht modules, parametrized by the Young diagrams of size
. It turns out that the simple objects in
are parametrized by the Young diagrams of arbitrary size. There is an interesting way of thinking about this that Etingof explains in his talk, and which I will try to motivate here now.
OK. So, just as we defined a filtration on Deligne’s categories yesterday, let’s define a filtration on the ordinary representation categories . Namely, we let
denote the category generated by
for
the regular representation. When
is large enough, this becomes the full category, so we will always pretend that
is really really large relative to
(which is kinda ironic when you think about the notation…).
Anyhow, we want to look at the simple objects in . Well, these are going to have to correspond to some Young diagrmas of size
, but the question is which ones?
I claim that the Young diagrams that arise are precisely those where the rows below the top have
boxes.
In particular, as gets large, the top row must get really long, but the number of simple objects stays bounded.
To prove this I shall use the Pieri rule in the representation theory of the symmetric group. Basically, we know that decomposes into irreducibles as
, where
corresponds to the Young diagram
and to the Young diagram
I’ve shown it in the case , but the pattern should be clear:
has nothing below the top row, and
only one square. In this way, it is easy to see that our result about the irreducibles in
is valid for
.
Now, in proving the boldface claim, we are going to use some kind of inductive argument here, because the simple objects in outside of
are precisely the factors of the simple objects in
tensored with
. We can even replace
with
, since
is the unital object.
We now quote the Pieri rule.
Theorem 1 Let
be the irreducible representation of
corresponding to the Young diagram
. Then
Here
ranges over the set of Young diagrams that can be obtained by moving a corner cell, and
is the number of corner cells in
.
Suppose the claim proved for . Now any Young diagram
with
boxes below the top row can arise from a Young diagram
with
boxes below the top row by a corner transformation. By induction,
, whence
, and
is a direct factor of
by the Pieri rule. So, the proof now proceeds by induction.
So, the claim’s proved. Note that the claim is for large and
fixed, and equivalently it gives a bijection between the simples in
and the partitions of size
(by throwing away the top row). One thus expects that for
, the simple objects of
are parametrized by Young diagrams of size at most
. In fact, it is a general phenomenon that “generically,” representation theory in complex rank looks like classical representation theory.
More generally, the simple objects in are parametrized by all Young diagrams, where a Young diagram of size
can be heuristically viewed as a “Young diagram” of “size
” by adding a “top row” of “length”
.
Why is this ideology so useful? Well, here is an example. There is an important central element in the group algebra of the symmetric group called the Jucys-Murphy element
; it is the sum over the two-cycles. Now, the Jucys-Murphy element by itself does not make any sense in Deligne’s categories, because there is no
for
. However, there is still a corresponding endomorphism of the identity functor.
(Incidentally, it is a useful general bit of abstract nonsense that the endomorphisms of the identity functor on the category of modules over a ring
is isomorphic to the center of
.)
How are we going to get this endomorphism of the identity functor? Well, is semisimple when
, so we need only prescribe the maps
for
a Young diagram and
the associated simple object.
Now, consider a standard Young diagram :
Suppose all but the top row is fixed, where the top row is allowed to vary in length and get longer and longer. Then, instead of one , we have a family of Young diagrams
of size
. Consider the associated simple objects
. It can be shown, using the Frobenius character formula, that the action of
on
is a scalar polynomial in
. It is called the content.
In this way, one can define the content of a “Young diagram” where the top line has nonintegral length, just by interpolation.
So, now let’s go back to the partition and the simple object
. The way to define
as a morphism
is to add a very long line atop
of “size”
, and evaluate the content of this diagram(!).
(There is a fair bit of laughter in the middle of Etingof’s talk when he pulls out a transparency with a Young diagram with a comically large top row and normal-sized everything else.)
One disadvantage of this method is that you don’t get the Jucys-Murphy endomorphism for . There is another way one can describe it explicitly in terms of the relation symbols used in the definition of Deligne’s categories, and this is actually the way that I find more useful in my paper. But this is fun.
2. Proof
Enough heuristic and ideological motivation. I am now finally going to prove the parametrization of the simple objects in , and though it is a formality, I will enclose the theorem in its fancy box:
Theorem 2 For
, the simple objects in
are indexed by the partitions of size
. The simple objets in
are indexed by partitions of arbitrary size.
This theorem is proved by induction on (it’s trivial when
), and it uses a lot of what I set up yesterday. I will briefly review what I need; for the most part, you can refer to the post. So, let’s assume the theorem is true for
. Recall that we have a splitting
where for
. We proved that
And now, we will use the representation theory of and some general nonsense to construct the irreducible objects in
.
First, we have central idempotents for
a Young diagram of size
(indeed, the central idempotents are in bijection with the irreducible representations) and as a result, we get a splitting
.
We have if
because then the idempotents are both central and orthogonal. In addition, the endomorphism ring of each
is a matrix algebra (in view of the Wedderburn structure theorem). However,
is generally not going to be simple (it will be iff the corresponding irreducible representation has degree 1, by basic facts about regular representations).
Nevertheless, the following lemma implies that is isotypic, i.e. isomorphic to a direct sum of copies of the same simple object. It follows thus that the simple objects in
not belonging to
are indexed by the Young diagrams of size
, and so the lemma completes the proof the theorem.
Lemma 3 Suppose
is a semisimple
-linear category and
satisfies
. Then
is a direct sum of
copies of a simple object.
Indeed, we have idempotents in the matrix algebra
which are just diagonal matrices with a 1 in the
th place for
and zero everywhere else! There are corresponding simple objects
. Then
is one-dimensional for all
, so the
are isomorphic. It follows that
, so we have
in fact.
Deligne is a little more environmentally friendly than I am when he discusses this material; he actually combines the proofs of semisimplicity and classification into one rather terse section.
Next time, I’ll stop discussing Deligne’s paper, and focus on the material in Etingof’s talk (namely, various non-semisimple generalizations of Deligne’s categories). I’m drawing this material not only from that talk and various papers, but also on various discussions I’ve had with him since last summer. Some of it seems to be unpublished “folklore,” and I’ll do my best to put this folklore in a form that might be useful to others.
June 20, 2010 at 1:42 pm
[…] with a younger version of myself in mind). Readers may wish, however, to review my earlier posts on this […]