There is another major result in algebraic number theory that we need to get to! I have this no longer secret goal of getting to class field theory, and if it happens, this will be a key result. The hard part of the actual proof (namely, the determination of the rank of a certain lattice) will be deferred until next time; it’s possible to do it with the tools we already have, but it is cleaner (I think) to do it once ideles have been introduced.
Following the philosophy of examples first, let us motivate things with an example. Consider the ring of Gaussian; as is well-known, this is the ring of integers in the quadratic field
. To see this, suppose
is integral; then so is
, and thus
are integers. Also the fact
must be an integer now means that neither
can be of the form
for
odd.
What are the units in ? If
is a unit, so is
, so the norm
must be a unit in
(and hence in
). So if
, then
and
or
. So, the units are just the roots of unity.
In general, however, the situation is more complicated. Consider , which is again integrally closed. Then
is a unit if and only if its norm to
, i.e.
is equal to
. Indeed, the norm
of a unit
is still a unit, and since
is integrally closed, we find that
is a
-unit. In particular, the units correspond to the solutions to the Pell equation. There are infinitely many of them.
But the situation is not hopeless. We will show that in any number field, the unit group is a direct sum of copies of and the roots of unity. We will also determine the rank.
1. -units
Let be a number field. Then I claim that
is a unit if and only if its order at any nonarchimedean valuation is zero. Indeed, if we let
be the ring of integers in
—so that
is a Dedekind domain—then
belongs to the localizations
for each nonzero prime ideal
. But
from a basic result in commutative algebra true of any integral domain. Hence if satisfies the order condition, then
, and by symmetry
, proving the claim.
Now, let be a finite set of places of
containing the archimedean places
. We say that
is a
-unit if
has order zero at the places outside
; denote the set of
-units by
.
This is clearly a generalization of the usual notion of unit, and reduces to it when . Alternatively, if we consider the ring
of elements of
integral outside
, then
is the unit group of
.
2. The unit theorem
The principal goal in this post is to prove:
Theorem 1 (Unit theorem) The group
is isomorphic to a direct sum
, where
is the group of roots of unity in
.
To prove it, we define a mapping by (where
)
so that by the product formula, is contained in the subspace
defined by
iff
.
I claim that: first, the kernel of consists of the roots of unity; and second, the image of
is a lattice in
. Together, these will prove the unit theorem after we have computed the rank (which we will do later).
Claim 1. If , then
for all places
. We now need a lemma.
Lemma 2 Suppose
is a constant. Then there are only finitely many points
of
such that
for all places
.
The characteristic polynomial of (as an endomorphism of
) has rational coefficients which are the symmetric functions of the conjugates of
, and which thus are bounded at all rational places by
. However, there are only finitely many rational numbers
satisfying
and
, as is easily checked, so there are only finitely many possible characteristic polynomials. Now
satisfies its characteristic polynomial, so there are only finitely many possibilities for it. This proves the lemma.
To finish the proof of the claim, note that all powers of have norm 1 at all places, so by the lemma we must get
for some
, proving the claim.
Note in particular that must be a discrete set by the lemma, since any bounded region in
contains only finitely many points. Thus
is a lattice in
, and
is the direct sum of a finite group (the roots of unity) and a lattice.
It remains to determine the rank of the lattice, which we will do next time; it will be easier to do this after ideles have been introduced.
Leave a Reply