I’m going to get back eventually to the story about finite-dimensional modules, but for now, Lie algebras are more immediate to my project, so I’ll talk about them here.
From an expository standpoint, jumping straight to basically right after defining Lie algebras was unsound. I am going to try to motivate them here and discuss some theorems, to lead into more of the general representation theory.
Derivations
So let’s consider a not-necessarily-associative algebra over some field
. In other words,
is a
-vector space, and there is a
-bilinear map
, which sends say
, but it doesn’t have to either be commutative or associative (or unital). A Lie algebra with the Lie bracket would be one example.
The notion of derivations in an algebra is a generalization of derivatives:
Definition 1 A derivation of
is a linear map
such that for all
,
If has a two-sided unit, then
, so
.
So, for instance, if is a polynomial ring
(which is an algebra), and
is a partial derivative
with respect to some variable
, then
is a derivation of
: (1) is the product rule.
Lie algebras and derivations are closely intertwined:
Example 1 In a Lie algebra
, for
fixed, the map
,
, is a derivation. This is just the Jacobi identity.
We can go the other way too:
Proposition 2 Let
be an algebra. Then the set
of derivations of
(which is a vector space, as can be checked directly), is a Lie algebra, under the bracket
This is a matter of computation. The bracket is clearly bilinear and satisfies . The Jacobi identity takes a bit more work to check, but it follows from the definitions too.
Here is a general remark:
Using this, we can make the collection of smooth vector fields on a manifold into a Lie algebra. Indeed, a vector field is the same thing as a derivation of the space of smooth functions—an algebra under pointwise multiplication—by a general theorem, so we can take a Lie bracket. On a Lie group, moreover, we can look at left-invariant vector fields, and get the corresponding Lie algebra associated to the Lie group.
Basic Constructions
We’ll give a couple of basic constructions on how to construct new Lie algebras from old ones:
Example 2 If
are Lie algebras, then
is a Lie algebra in a natural way.
Example 3 If
is a Lie algebra and
a Lie ideal, i.e.
implies
, then we can make the quotient vector space
into a Lie algebra in a natural fashion.
There is also a slightly more complicated construction that amalgamates a Lie algebra and a derivation:
Example 4 Let
be a Lie algebra and
a nonzero derivation. Then the vector space
(where
is just the one-dimensional space spanned by
) can be made into a Lie algebra containing
as a subalgebra. as follows. If
, define
. If
, then
. Finally, if
,
. We need to check that with this,
is actually a Lie algebra. The fact that the bracket is bilinear and alternating follows from the definition. To check the Jacobi identity, which is bilinear in the three variables
, one reduces to checking individual cases, e.g.
.
The Adjoint Representation
While we’re covering the basic definitions and facts about Lie algebras, representation theory is our ultimate goal. Here I want to describe an easy way of getting a representation of a Lie algebra.
Definition 3 Suppose
is of dimension
. Then the adjoint representation
sends
.
Recall from before that is the linear transformation of
such that
. We need to check this is actually a representation, i.e.
for which we evaluate at some , so that our expression to prove becomes
which follows from a combination of the Jacobi identity and antisymmetry.
The adjoint representation is especially nice when it’s injective, or faithful; then we’ve found a way to embed as a Lie subalgebra of some
. This will happen e.g. when
is semisimple (more about that later).
So, with these basic facts covered, it’s time to start looking at representations in the general case. Next up should be representations of nilpotent algebras, i.e. Engel’s theorem.
Leave a Reply